深度学习网络模型————Swin-Transformer详细讲解与代码实现

慈云数据 2024-03-27 技术支持 61 0

深度学习网络模型——Swin-Transformer详细讲解与代码实现

  • 一、网路模型整体架构
  • 二、Patch Partition模块详解
  • 三、Patch Merging模块
  • 四、W-MSA详解
  • 五、SW-MSA详解
    • masked MSA详解
    • 六、 Relative Position Bias详解
    • 七、模型详细配置参数
    • 八、重要模块代码实现:
      • 1、Patch Partition代码模块:
      • 2、Patch Merging代码模块:
      • 3、mask掩码生成代码模块:
      • 4、stage堆叠部分代码:
      • 5、SW-MSA或者W-MSA模块代码:
      • 九:模型整体流程代码实现:

        论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

        原论文地址: https://arxiv.org/abs/2103.14030

        官方开源代码地址:https://github.com/microsoft/Swin-Transformer

        在这里插入图片描述

        一、网路模型整体架构

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        二、Patch Partition模块详解

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        三、Patch Merging模块

        在这里插入图片描述

        在这里插入图片描述

        四、W-MSA详解

        在这里插入图片描述

        在这里插入图片描述

        五、SW-MSA详解

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        在这里插入图片描述

        masked MSA详解

        在这里插入图片描述

        六、 Relative Position Bias详解

        在这里插入图片描述

        在这里插入图片描述

        七、模型详细配置参数

        在这里插入图片描述

        八、重要模块代码实现:

        1、Patch Partition代码模块:

        class PatchEmbed(nn.Module):
            """
            2D Image to Patch Embedding
            split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
            """
            def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
                super().__init__()
                patch_size = (patch_size, patch_size)
                self.patch_size = patch_size
                self.in_chans = in_c
                self.embed_dim = embed_dim
                self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
                self.norm = norm_layer(embed_dim) if norm_layer else nn.IdEntity()
            def forward(self, x):
                _, _, H, W = x.shape
                # padding
                # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
                pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
                if pad_input:
                    # to pad the last 3 dimensions,
                    # (W_left, W_right, H_top,H_bottom, C_front, C_back)
                    x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                                  0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                                  0, 0))
                # 下采样patch_size倍
                x = self.proj(x)
                _, _, H, W = x.shape
                # flatten: [B, C, H, W] -> [B, C, HW]
                # transpose: [B, C, HW] -> [B, HW, C]
                x = x.flatten(2).transpose(1, 2)
                x = self.norm(x)
                return x, H, W
        

        2、Patch Merging代码模块:

        class PatchMerging(nn.Module):
            r""" Patch Merging Layer.
                步长为2,间隔采样
            Args:
                dim (int): Number of input channels.
                norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
            """
            def __init__(self, dim, norm_layer=nn.LayerNorm):
                super().__init__()
                self.dim = dim
                self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
                self.norm = norm_layer(4 * dim)
            def forward(self, x, H, W):
                """
                x: B, H*W, C    即输入x的通道排列顺序
                """
                B, L, C = x.shape
                assert L == H * W, "input feature has wrong size"
                x = x.view(B, H, W, C)
                # padding
                # 如果输入feature map的H,W不是2的整数倍,需要进行padding
                pad_input = (H % 2 == 1) or (W % 2 == 1)
                if pad_input:
                    # to pad the last 3 dimensions, starting from the last dimension and moving forward.
                    # (C_front, C_back, W_left, W_right, H_top, H_bottom)
                    # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
                    x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
                # 以2为间隔进行采样
                x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
                x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
                x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
                x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
                x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
                x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]
                x = self.norm(x)
                x = self.reduction(x)  # [B, H/2*W/2, 2*C]
                return x
        

        3、mask掩码生成代码模块:

            def create_mask(self, x, H, W):
                # calculate attention mask for SW-MSA
                # 保证Hp和Wp是window_size的整数倍
                Hp = int(np.ceil(H / self.window_size)) * self.window_size
                Wp = int(np.ceil(W / self.window_size)) * self.window_size
                # 拥有和feature map一样的通道排列顺序,方便后续window_partition
                img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
                h_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                w_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                cnt = 0
                for h in h_slices:
                    for w in w_slices:
                        img_mask[:, h, w, :] = cnt
                        cnt += 1
                # 将img_mask划分成一个一个窗口
                mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
                mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
                attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
                # [nW, Mh*Mw, Mh*Mw]
                # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
                attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
                return attn_mask
        

        4、stage堆叠部分代码:

        class BasicLayer(nn.Module):
            """
            A basic Swin Transformer layer for one stage.
            Args:
                dim (int): Number of input channels.
                depth (int): Number of blocks.
                num_heads (int): Number of attention heads.
                window_size (int): Local window size.
                mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
                qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
                drop (float, optional): Dropout rate. Default: 0.0
                attn_drop (float, optional): Attention dropout rate. Default: 0.0
                drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
                norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
                downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
                use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
            """
            def __init__(self, dim, depth, num_heads, window_size,
                         mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                         drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
                super().__init__()
                self.dim = dim
                self.depth = depth
                self.window_size = window_size
                self.use_checkpoint = use_checkpoint
                self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整
                # build blocks
                self.blocks = nn.ModuleList([
                    SwinTransformerBlock(
                        dim=dim,
                        num_heads=num_heads,
                        window_size=window_size,
                        shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                        mlp_ratio=mlp_ratio,
                        qkv_bias=qkv_bias,
                        drop=drop,
                        attn_drop=attn_drop,
                        drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                        norm_layer=norm_layer)
                    for i in range(depth)])
                # patch merging layer    即:PatchMerging类
                if downsample is not None:
                    self.downsample = downsample(dim=dim, norm_layer=norm_layer)
                else:
                    self.downsample = None
            def create_mask(self, x, H, W):
                # calculate attention mask for SW-MSA
                # 保证Hp和Wp是window_size的整数倍
                Hp = int(np.ceil(H / self.window_size)) * self.window_size
                Wp = int(np.ceil(W / self.window_size)) * self.window_size
                # 拥有和feature map一样的通道排列顺序,方便后续window_partition
                img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
                h_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                w_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                cnt = 0
                for h in h_slices:
                    for w in w_slices:
                        img_mask[:, h, w, :] = cnt
                        cnt += 1
                # 将img_mask划分成一个一个窗口
                mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
                mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
                attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
                # [nW, Mh*Mw, Mh*Mw]
                # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
                attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
                return attn_mask
            def forward(self, x, H, W):
                attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
                for blk in self.blocks:
                    blk.H, blk.W = H, W
                    if not torch.jit.is_scripting() and self.use_checkpoint:
                        x = checkpoint.checkpoint(blk, x, attn_mask)
                    else:
                        x = blk(x, attn_mask)
                if self.downsample is not None:
                    x = self.downsample(x, H, W)
                    H, W = (H + 1) // 2, (W + 1) // 2
                return x, H, W
        

        5、SW-MSA或者W-MSA模块代码:

        class SwinTransformerBlock(nn.Module):
            r""" Swin Transformer Block.
            Args:
                dim (int): Number of input channels.
                num_heads (int): Number of attention heads.
                window_size (int): Window size.
                shift_size (int): Shift size for SW-MSA.
                mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
                qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
                drop (float, optional): Dropout rate. Default: 0.0
                attn_drop (float, optional): Attention dropout rate. Default: 0.0
                drop_path (float, optional): Stochastic depth rate. Default: 0.0
                act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
                norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
            """
            def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                         mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                         act_layer=nn.GELU, norm_layer=nn.LayerNorm):
                super().__init__()
                self.dim = dim
                self.num_heads = num_heads
                self.window_size = window_size
                self.shift_size = shift_size
                self.mlp_ratio = mlp_ratio
                assert 0  0. else nn.Identity()
                self.norm2 = norm_layer(dim)
                mlp_hidden_dim = int(dim * mlp_ratio)
                self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
            def forward(self, x, attn_mask):
                H, W = self.H, self.W
                B, L, C = x.shape
                assert L == H * W, "input feature has wrong size"
                shortcut = x
                x = self.norm1(x)
                x = x.view(B, H, W, C)
                # pad feature maps to multiples of window size
                # 把feature map给pad到window size的整数倍
                pad_l = pad_t = 0
                pad_r = (self.window_size - W % self.window_size) % self.window_size
                pad_b = (self.window_size - H % self.window_size) % self.window_size
                x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
                _, Hp, Wp, _ = x.shape
                # cyclic shift
                # 判断是进行SW-MSA或者是W-MSA模块
                if self.shift_size > 0:
                    # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
                    shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
                else:
                    shifted_x = x
                    attn_mask = None
                # partition windows
                # 将窗口按照window_size的大小进行划分,得到一个个窗口
                x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
                # 将数据进行展平操作
                x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]
                # W-MSA/SW-MSA
                """
                    # 进行多头自注意力机制操作
                """
                attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]
                # merge windows
                attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
                # 将多窗口拼接回大的featureMap
                shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]
                # reverse cyclic shift
                # 将移位的数据进行还原
                if self.shift_size > 0:
                    x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
                else:
                    x = shifted_x
                # 如果进行了padding操作,需要移出掉相应的pad
                if pad_r > 0 or pad_b > 0:
                    # 把前面pad的数据移除掉
                    x = x[:, :H, :W, :].contiguous()
                x = x.view(B, H * W, C)
                # FFN
                x = shortcut + self.drop_path(x)
                x = x + self.drop_path(self.mlp(self.norm2(x)))
                return x
        

        九:模型整体流程代码实现:

        """ Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
            - https://arxiv.org/pdf/2103.14030
        Code/weights from https://github.com/microsoft/Swin-Transformer
        """
        import torch
        import torch.nn as nn
        import torch.nn.functional as F
        import torch.utils.checkpoint as checkpoint
        import numpy as np
        from typing import Optional
        def drop_path_f(x, drop_prob: float = 0., training: bool = False):
            """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
            This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
            the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
            See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
            changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
            'survival rate' as the argument.
            """
            if drop_prob == 0. or not training:
                return x
            keep_prob = 1 - drop_prob
            shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
            random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
            random_tensor.floor_()  # binarize
            output = x.div(keep_prob) * random_tensor
            return output
        class DropPath(nn.Module):
            """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
            """
            def __init__(self, drop_prob=None):
                super(DropPath, self).__init__()
                self.drop_prob = drop_prob
            def forward(self, x):
                return drop_path_f(x, self.drop_prob, self.training)
        """
            将窗口按照window_size的大小进行划分,得到一个个窗口
        """
        def window_partition(x, window_size: int):
            """
            将feature map按照window_size划分成一个个没有重叠的window
            Args:
                x: (B, H, W, C)
                window_size (int): window size(M)
            Returns:
                windows: (num_windows*B, window_size, window_size, C)
            """
            B, H, W, C = x.shape
            x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
            # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
            # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
            windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据
            return windows
        def window_reverse(windows, window_size: int, H: int, W: int):
            """
            将一个个window还原成一个feature map
            Args:
                windows: (num_windows*B, window_size, window_size, C)
                window_size (int): Window size(M)
                H (int): Height of image
                W (int): Width of image
            Returns:
                x: (B, H, W, C)
            """
            B = int(windows.shape[0] / (H * W / window_size / window_size))
            # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
            x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
            # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
            # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
            x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
            return x
        class PatchEmbed(nn.Module):
            """
            2D Image to Patch Embedding
            split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
            """
            def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
                super().__init__()
                patch_size = (patch_size, patch_size)
                self.patch_size = patch_size
                self.in_chans = in_c
                self.embed_dim = embed_dim
                self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
                self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
            def forward(self, x):
                _, _, H, W = x.shape
                # padding
                # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
                pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
                if pad_input:
                    # to pad the last 3 dimensions,
                    # (W_left, W_right, H_top,H_bottom, C_front, C_back)
                    x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                                  0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                                  0, 0))
                # 下采样patch_size倍
                x = self.proj(x)
                _, _, H, W = x.shape
                # flatten: [B, C, H, W] -> [B, C, HW]
                # transpose: [B, C, HW] -> [B, HW, C]
                x = x.flatten(2).transpose(1, 2)
                x = self.norm(x)
                return x, H, W
        class PatchMerging(nn.Module):
            r""" Patch Merging Layer.
                步长为2,间隔采样
            Args:
                dim (int): Number of input channels.
                norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
            """
            def __init__(self, dim, norm_layer=nn.LayerNorm):
                super().__init__()
                self.dim = dim
                self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
                self.norm = norm_layer(4 * dim)
            def forward(self, x, H, W):
                """
                x: B, H*W, C    即输入x的通道排列顺序
                """
                B, L, C = x.shape
                assert L == H * W, "input feature has wrong size"
                x = x.view(B, H, W, C)
                # padding
                # 如果输入feature map的H,W不是2的整数倍,需要进行padding
                pad_input = (H % 2 == 1) or (W % 2 == 1)
                if pad_input:
                    # to pad the last 3 dimensions, starting from the last dimension and moving forward.
                    # (C_front, C_back, W_left, W_right, H_top, H_bottom)
                    # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
                    x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
                # 以2为间隔进行采样
                x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
                x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
                x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
                x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
                x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
                x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]
                x = self.norm(x)
                x = self.reduction(x)  # [B, H/2*W/2, 2*C]
                return x
        """
        MLP模块
        """
        class Mlp(nn.Module):
            """ MLP as used in Vision Transformer, MLP-Mixer and related networks
            """
            def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
                super().__init__()
                out_features = out_features or in_features
                hidden_features = hidden_features or in_features
                self.fc1 = nn.Linear(in_features, hidden_features)
                self.act = act_layer()
                self.drop1 = nn.Dropout(drop)
                self.fc2 = nn.Linear(hidden_features, out_features)
                self.drop2 = nn.Dropout(drop)
            def forward(self, x):
                x = self.fc1(x)
                x = self.act(x)
                x = self.drop1(x)
                x = self.fc2(x)
                x = self.drop2(x)
                return x
        """
        WindowAttention即为:SW-MSA或者W-MSA模块
        """
        class WindowAttention(nn.Module):
            r""" Window based multi-head self attention (W-MSA) module with relative position bias.
            It supports both of shifted and non-shifted window.
            Args:
                dim (int): Number of input channels.
                window_size (tuple[int]): The height and width of the window.
                num_heads (int): Number of attention heads.
                qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
                attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
                proj_drop (float, optional): Dropout ratio of output. Default: 0.0
            """
            def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):
                super().__init__()
                self.dim = dim
                self.window_size = window_size  # [Mh, Mw]
                self.num_heads = num_heads
                head_dim = dim // num_heads
                self.scale = head_dim ** -0.5
                # define a parameter table of relative position bias
                # 创建偏置bias项矩阵
                self.relative_position_bias_table = nn.Parameter(
                    torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]
                # get pair-wise relative position index for each token inside the window
                coords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]为2的话,则生成的coords_h为[0,1]
                coords_w = torch.arange(self.window_size[1])  # 同理得
                coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]
                coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
                # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
                relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
                relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
                relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0  行标+(M-1)
                relative_coords[:, :, 1] += self.window_size[1] - 1     # 列表标+(M-1)
                relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
                relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
                self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中
                self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
                self.attn_drop = nn.Dropout(attn_drop)
                self.proj = nn.Linear(dim, dim)
                self.proj_drop = nn.Dropout(proj_drop)
                nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
                self.softmax = nn.Softmax(dim=-1)
            def forward(self, x, mask: Optional[torch.Tensor] = None):
                """
                Args:
                    x: input features with shape of (num_windows*B, Mh*Mw, C)
                    mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
                """
                # [batch_size*num_windows, Mh*Mw, total_embed_dim]
                B_, N, C = x.shape
                # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
                # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
                # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
                qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
                # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
                q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
                # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
                # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
                q = q * self.scale
                attn = (q @ k.transpose(-2, -1))
                # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
                relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                    self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
                relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
                attn = attn + relative_position_bias.unsqueeze(0)
                # 进行mask,相同区域使用0表示;不同区域使用-100表示
                if mask is not None:
                    # mask: [nW, Mh*Mw, Mh*Mw]
                    nW = mask.shape[0]  # num_windows
                    # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
                    # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
                    attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
                    attn = attn.view(-1, self.num_heads, N, N)
                    attn = self.softmax(attn)
                else:
                    attn = self.softmax(attn)
                attn = self.attn_drop(attn)
                # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
                # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
                # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
                x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
                x = self.proj(x)
                x = self.proj_drop(x)
                return x
        """
            SwinTransformerBlock
        """
        class SwinTransformerBlock(nn.Module):
            r""" Swin Transformer Block.
            Args:
                dim (int): Number of input channels.
                num_heads (int): Number of attention heads.
                window_size (int): Window size.
                shift_size (int): Shift size for SW-MSA.
                mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
                qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
                drop (float, optional): Dropout rate. Default: 0.0
                attn_drop (float, optional): Attention dropout rate. Default: 0.0
                drop_path (float, optional): Stochastic depth rate. Default: 0.0
                act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
                norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
            """
            def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                         mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                         act_layer=nn.GELU, norm_layer=nn.LayerNorm):
                super().__init__()
                self.dim = dim
                self.num_heads = num_heads
                self.window_size = window_size
                self.shift_size = shift_size
                self.mlp_ratio = mlp_ratio
                assert 0  0. else nn.Identity()
                self.norm2 = norm_layer(dim)
                mlp_hidden_dim = int(dim * mlp_ratio)
                self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
            def forward(self, x, attn_mask):
                H, W = self.H, self.W
                B, L, C = x.shape
                assert L == H * W, "input feature has wrong size"
                shortcut = x
                x = self.norm1(x)
                x = x.view(B, H, W, C)
                # pad feature maps to multiples of window size
                # 把feature map给pad到window size的整数倍
                pad_l = pad_t = 0
                pad_r = (self.window_size - W % self.window_size) % self.window_size
                pad_b = (self.window_size - H % self.window_size) % self.window_size
                x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
                _, Hp, Wp, _ = x.shape
                # cyclic shift
                # 判断是进行SW-MSA或者是W-MSA模块
                if self.shift_size > 0:
                    # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
                    shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
                else:
                    shifted_x = x
                    attn_mask = None
                # partition windows
                # 将窗口按照window_size的大小进行划分,得到一个个窗口
                x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
                # 将数据进行展平操作
                x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]
                # W-MSA/SW-MSA
                """
                    # 进行多头自注意力机制操作
                """
                attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]
                # merge windows
                attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
                # 将多窗口拼接回大的featureMap
                shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]
                # reverse cyclic shift
                # 将移位的数据进行还原
                if self.shift_size > 0:
                    x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
                else:
                    x = shifted_x
                # 如果进行了padding操作,需要移出掉相应的pad
                if pad_r > 0 or pad_b > 0:
                    # 把前面pad的数据移除掉
                    x = x[:, :H, :W, :].contiguous()
                x = x.view(B, H * W, C)
                # FFN
                x = shortcut + self.drop_path(x)
                x = x + self.drop_path(self.mlp(self.norm2(x)))
                return x
        class BasicLayer(nn.Module):
            """
            A basic Swin Transformer layer for one stage.
            Args:
                dim (int): Number of input channels.
                depth (int): Number of blocks.
                num_heads (int): Number of attention heads.
                window_size (int): Local window size.
                mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
                qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
                drop (float, optional): Dropout rate. Default: 0.0
                attn_drop (float, optional): Attention dropout rate. Default: 0.0
                drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
                norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
                downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
                use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
            """
            def __init__(self, dim, depth, num_heads, window_size,
                         mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                         drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
                super().__init__()
                self.dim = dim
                self.depth = depth
                self.window_size = window_size
                self.use_checkpoint = use_checkpoint
                self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整
                # build blocks
                self.blocks = nn.ModuleList([
                    SwinTransformerBlock(
                        dim=dim,
                        num_heads=num_heads,
                        window_size=window_size,
                        shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                        mlp_ratio=mlp_ratio,
                        qkv_bias=qkv_bias,
                        drop=drop,
                        attn_drop=attn_drop,
                        drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                        norm_layer=norm_layer)
                    for i in range(depth)])
                # patch merging layer    即:PatchMerging类
                if downsample is not None:
                    self.downsample = downsample(dim=dim, norm_layer=norm_layer)
                else:
                    self.downsample = None
            def create_mask(self, x, H, W):
                # calculate attention mask for SW-MSA
                # 保证Hp和Wp是window_size的整数倍
                Hp = int(np.ceil(H / self.window_size)) * self.window_size
                Wp = int(np.ceil(W / self.window_size)) * self.window_size
                # 拥有和feature map一样的通道排列顺序,方便后续window_partition
                img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
                h_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                w_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -self.shift_size),
                            slice(-self.shift_size, None))
                cnt = 0
                for h in h_slices:
                    for w in w_slices:
                        img_mask[:, h, w, :] = cnt
                        cnt += 1
                # 将img_mask划分成一个一个窗口
                mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
                mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
                attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
                # [nW, Mh*Mw, Mh*Mw]
                # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
                attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
                return attn_mask
            def forward(self, x, H, W):
                attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
                for blk in self.blocks:
                    blk.H, blk.W = H, W
                    if not torch.jit.is_scripting() and self.use_checkpoint:
                        x = checkpoint.checkpoint(blk, x, attn_mask)
                    else:
                        x = blk(x, attn_mask)
                if self.downsample is not None:
                    x = self.downsample(x, H, W)
                    H, W = (H + 1) // 2, (W + 1) // 2
                return x, H, W
        class SwinTransformer(nn.Module):
            r""" Swin Transformer
                A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
                  https://arxiv.org/pdf/2103.14030
            Args:
                patch_size (int | tuple(int)): Patch size. Default: 4   表示通过Patch Partition层后,下采样几倍
                in_chans (int): Number of input image channels. Default: 3
                num_classes (int): Number of classes for classification head. Default: 1000
                embed_dim (int): Patch embedding dimension. Default: 96
                depths (tuple(int)): Depth of each Swin Transformer layer.
                num_heads (tuple(int)): Number of attention heads in different layers.
                window_size (int): Window size. Default: 7
                mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
                qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
                drop_rate (float): Dropout rate. Default: 0
                attn_drop_rate (float): Attention dropout rate. Default: 0
                drop_path_rate (float): Stochastic depth rate. Default: 0.1
                norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
                patch_norm (bool): If True, add normalization after patch embedding. Default: True
                use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
            """
            def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍
                         in_chans=3,           # 输入图像通道
                         num_classes=1000,     # 类别数
                         embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8C
                         depths=(2, 2, 6, 2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数
                         num_heads=(3, 6, 12, 24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                         window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小
                         mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数
                         qkv_bias=True,
                         drop_rate=0.,          # 对应的PatchEmbed层后面的
                         attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRate
                         drop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                         norm_layer=nn.LayerNorm,
                         patch_norm=True,
                         use_checkpoint=False, **kwargs):
                super().__init__()
                self.num_classes = num_classes
                self.num_layers = len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数
                self.embed_dim = embed_dim
                self.patch_norm = patch_norm
                # stage4输出特征矩阵的channels
                self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
                self.mlp_ratio = mlp_ratio
                # split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
                self.patch_embed = PatchEmbed(
                    patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
                    norm_layer=norm_layer if self.patch_norm else None)
                self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层
                # stochastic depth
                dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
                # build layers
                self.layers = nn.ModuleList()
                for i_layer in range(self.num_layers):
                    # 注意这里构建的stage和论文图中有些差异
                    # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
                    layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),  # 传入特征矩阵的维度,即channel方向的深度
                                        depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Block
                                        num_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                                        window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小
                                        mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数
                                        qkv_bias=qkv_bias,
                                        drop=drop_rate,                     # 对应的PatchEmbed层后面的
                                        attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRate
                                        drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                                        norm_layer=norm_layer,
                                        downsample=PatchMerging if (i_layer  0 else nn.Identity()
                self.apply(self._init_weights)
            def _init_weights(self, m):
                if isinstance(m, nn.Linear):
                    nn.init.trunc_normal_(m.weight, std=.02)
                    if isinstance(m, nn.Linear) and m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.LayerNorm):
                    nn.init.constant_(m.bias, 0)
                    nn.init.constant_(m.weight, 1.0)
            def forward(self, x):
                # x: [B, L, C]
                x, H, W = self.patch_embed(x)  # 对图像下采样4倍
                x = self.pos_drop(x)
                # 依次传入各个stage中
                for layer in self.layers:
                    x, H, W = layer(x, H, W)
                x = self.norm(x)  # [B, L, C]
                x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
                x = torch.flatten(x, 1)
                x = self.head(x)   # 经过全连接层,得到输出
                return x
        def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
            # trained ImageNet-1K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=7,
                                    embed_dim=96,
                                    depths=(2, 2, 6, 2),
                                    num_heads=(3, 6, 12, 24),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):
            # trained ImageNet-1K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=7,
                                    embed_dim=96,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(3, 6, 12, 24),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):
            # trained ImageNet-1K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=7,
                                    embed_dim=128,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(4, 8, 16, 32),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):
            # trained ImageNet-1K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=12,
                                    embed_dim=128,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(4, 8, 16, 32),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
            # trained ImageNet-22K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=7,
                                    embed_dim=128,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(4, 8, 16, 32),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
            # trained ImageNet-22K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=12,
                                    embed_dim=128,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(4, 8, 16, 32),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
            # trained ImageNet-22K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=7,
                                    embed_dim=192,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(6, 12, 24, 48),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
            # trained ImageNet-22K
            # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth
            model = SwinTransformer(in_chans=3,
                                    patch_size=4,
                                    window_size=12,
                                    embed_dim=192,
                                    depths=(2, 2, 18, 2),
                                    num_heads=(6, 12, 24, 48),
                                    num_classes=num_classes,
                                    **kwargs)
            return model
        
微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon