数据结构c版(3)——排序算法

慈云数据 2024-03-15 技术支持 76 0

本章我们来学习一下数据结构的排序算法

目录

1.排序的概念及其运用

1.1排序的概念

1.2 常见的排序算法

2.常见排序算法的实现

2.1 插入排序

2.1.1基本思想:

2.1.2直接插入排序:

2.1.3 希尔排序( 缩小增量排序 )

2.2 选择排序

2.2.1基本思想:

2.2.2 直接选择排序:

2.2.3 堆排序

2.3 交换排序

2.3.1冒泡排序

2.3.2 快速排序

1. hoare版本

2. 挖坑法

3. 前后指针版本 ​编辑

2.3.2 快速排序优化

 2.3.3 快速排序非递归

2.4 归并排序

2.5 非比较排序

3.排序算法复杂度及稳定性分析


1.排序的概念及其运用

1.1排序的概念

(1)排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

(2)稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次   序保持不变,即在原序列中,  r [ i ] = r [ j ],且 r [ i ] 在 r [ j ] 之前,而在排序后的序列中,  r [ i ] 仍在 r [ j ]之前,则称这种排序算法是稳定的;否则称为不稳定的。

(3)内部排序:数据元素全部放在内存中的排序。

(4)外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2 常见的排序算法

2.常见排序算法的实现

2.1 插入排序

2.1.1基本思想:

直接插入排序是一种简单的插入排序法,其基本思想是:

        把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

实际中我们玩扑克牌时,就用了插入排序的思想

2.1.2直接插入排序:

        当插入第i(i>=1) 个元素时,前面的 array[0],array[1],…,array[i-1] 已经排好序,此时用 array[i] 的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将 array[i] 插入,原来位置上的元素顺序后移; 代码案例:
// 时间复杂度:O(N^2) 逆序
// 最好的情况:O(N)  顺序有序
void InsertSort(int* a, int n)
{
	// [0, end] end+1
	for (int i = 0; i = 0)
		{
			if (tmp > a[end])
			{
				a[end + 1] = a[end];
				--end;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}
直接插入排序的特性总结:         1. 元素集合越接近有序,直接插入排序算法的时间效率越高。         2. 时间复杂度: O(N^2)         3. 空间复杂度: O(1) ,它是一种稳定的排序算法。         4. 稳定性:稳定

2.1.3 希尔排序( 缩小增量排序 )

        希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个 组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工 作。当到达 =1 时,所有记录在统一组内排好序 。

 

 代码案例:

// 平均O(N^1.3)
void ShellSort(int* a, int n)
{
	int gap = n;
	// gap > 1时是预排序,目的让他接近有序
	// gap == 1是直接插入排序,目的是让他有序
	while (gap > 1)
	{
		//gap = gap / 2;
		gap = gap / 3 + 1;
		for (int i = 0; i = 0)
			{
				if (tmp  
 
  
  希尔排序的特性总结:  
  
  
  
          1. 希尔排序是对直接插入排序的优化。  
  
  
  
          2. 当 
  gap > 1 
  时都是预排序,目的是让数组更接近于有序。当 
  gap == 1 
  时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。  
  
  
  
          3. 希尔排序的时间复杂度不好计算,因为 
  gap 
  的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排序的时间复杂度都不固定:  
  
  
  《数据结构 
  (C 
  语言版 
  ) 
  》 
  ---  
  严蔚敏 
  
  
  

 《数据结构-用面相对象方法与C++描述》--- 殷人昆

因为gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(n^{1.25}) 到 O(1.6*n^{1.25}) 来算。

        4. 稳定性:不稳定

2.2 选择排序

2.2.1基本思想:

        每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2.2.2 直接选择排序:

        在元素集合array[i]--array[n-1] 中选择关键码最大 ( 小 ) 的数据元素若它不是这组元素中的最后一个( 第一个 ) 元素,则将它与这组元素中的最后一个(第一个)元素交换在剩余的array[i]--array[n-2] ( array[i+1]--array[n-1] )集合中,重复上述步骤,直到集合剩余 1 个元素。

  代码案例:

// 时间复杂度:O(N^2)
// 最好的情况下:O(N^2)
void SelectSort(int* a, int n)
{
	int begin = 0, end = n - 1;
	while (begin  
 
  
  直接选择排序的特性总结:  
  
  
  
          1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用。 
  
  
  
          2. 时间复杂度: 
  O(N^2)  
  
  
  
          3. 空间复杂度: 
  O(1)  
  
  
  
          4. 稳定性:不稳定 
  
 

2.2.3 堆排序

        堆排序(Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

 

 代码案例:

void AdjustDown(int* a, int size, int parent)
{
	int child = parent * 2 + 1;
	while (child  a[child])
		{
			++child;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
// 升序
void HeapSort(int* a, int n)
{
	// O(N)
	// 建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDown(a, n, i);
	}
	// O(N*logN)
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}
堆排序的特性总结:         1. 堆排序使用堆来选数,效率就高了很多。         2. 时间复杂度: O(N*logN)         3. 空间复杂度: O(1)         4. 稳定性:不稳定

2.3 交换排序

        基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

2.3.1冒泡排序

 代码案例:

void Swap(int* p1, int* p2)
{
	int tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
// 时间复杂度:O(N^2)
// 最好情况是多少:O(N)
void BubbleSort(int* a, int n)
{
	for (int j = 0; j  a[i])
			{
				Swap(&a[i - 1], &a[i]);
				Exchange = true;
			}
		}
		if (exchange == false)
			break;
	}
冒泡排序的特性总结:         1. 冒泡排序是一种非常容易理解的排序         2. 时间复杂度: O(N^2)         3. 空间复杂度: O(1)         4. 稳定性:稳定

2.3.2 快速排序

        快速排序是Hoare 于 1962 年提出的一种二叉树结构的交换排序方法,其基本思想为: 任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右 子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止 。

 代码案例:

// 假设按照升序对array数组中[left, right)区间中的元素进行排序
void QuickSort(int array[], int left, int right)
{
     if(right - left  a[end])
			return begin;
		else
			return end;
	}
	else
	{
		//...
	}
}
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;
	int midi = GetMidi(a, begin, end);
	Swap(&a[midi], &a[begin]);
	int left = begin, right = end;
	int keyi = begin;
	while (left = a[keyi])
		{
			--right;
		}
		// 左边找大
		while (left  
2. 挖坑法

 代码案例:

// 挖坑法
int PartSort2(int* a, int begin, int end)
{
	int midi = GetMidi(a, begin, end);
	Swap(&a[midi], &a[begin]);
	int key = a[begin];
	int hole = begin;
	while (begin = key)
		{
			--end;
		}
		a[hole] = a[end];
		hole = end;
		// 左边找大,填到右边的坑
		while (begin  
3. 前后指针版本 

 代码案例:

int PartSort3(int* a, int begin, int end)
{
	int midi = GetMidi(a, begin, end);
	Swap(&a[midi], &a[begin]);
	int keyi = begin;
	int prev = begin;
	int cur = prev + 1;
	while (cur = end)
		return;
	int keyi = PartSort3(a, begin, end);
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi+1, end);
}

2.3.2 快速排序优化

1. 三数取中法选 key 2. 递归到小的子区间时,可以考虑使用插入排序

 2.3.3 快速排序非递归

 代码案例:

void QuickSortNonR(int* a, int left, int right)
{
    Stack st;
    StackInit(&st);
    StackPush(&st, left);
    StackPush(&st, right);
    while (StackEmpty(&st) != 0)
    {
         right = StackTop(&st);
         StackPop(&st);
         left = StackTop(&st);
         StackPop(&st);
     
         if(right - left = end)
		return;
	int mid = (begin + end) / 2;
    // [begin, mid][mid+1, end]
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid+1, end, tmp);
	// [begin, mid][mid+1, end]归并
	int begin1 = begin, end1 = mid;
	int begin2 = mid + 1, end2 = end;
	int i = begin;
	while (begin1 = n)
			{
				end2 = n - 1;
			}
			//printf("[%2d,%2d][%2d, %2d] ", begin1, end1, begin2, end2);
			int j = begin1;
			while (begin1 
微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon