AI语音模型PaddleSpeech踩坑(安装)指南

慈云数据 2024-05-28 技术支持 59 0

PaddleSpeech简介

PaddleSpeech 是基于飞桨 PaddlePaddle 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型。

PaddleSpeech安装步骤

提示:要找到一个合适的PaddleSpeech版本与paddlepaddle适配非常困难!官方文档也没有明确告诉我们PaddleSpeech要与哪个版本的python、paddlepaddle、cuda版本适配,只能自己尝试。经过N多次尝试,终于找到了能用的版本。因此,请严格按照下文的步骤执行。

相关依赖:
  1. gcc >= 4.8.5
  2. paddlepaddle = 3.8
安装docker版paddlepaddle

下面将用docker安装PaddleSpeech,这样会遇到更少的问题,更容易成功!

准备工作:

  1. 带GPU(以RTX4090为例)的Ubuntu 22.04系统,在 这里 下载550.78驱动的 .run 文件到Ubuntu系统内,运行命令(都以root身份运行):
# 更新系统
apt update
apt upgrade
# 重启系统
reboot
# 安装驱动
chmod +x NVIDIA-Linux-x86_64-550.78.run
# 安装过程中如果遇到需要重新打包内核,选择 "rebuild ini..."
./NVIDIA-Linux-x86_64-550.78.run
# 安装成功后,重启系统
reboot
# 查看是否安装成功,如果驱动安装成功,会显示如下图内容
nvidia-smi

驱动安装成功

2. 在系统中用apt安装docker:

# 删除旧版
for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done
# 用apt安装新版docker
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
echo \
  "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
  $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
  sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
# 测试是否安装成功,如果成功,会输出hello-world镜像的内容
sudo docker run hello-world
  1. 安装 NVIDIA Container Toolkit:
# 用apt方式安装NVIDIA Container Toolkit
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    
sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
# 配置NVIDIA Container Toolkit
# 如下命令会修改docker配置文件/etc/docker/daemon.json,没有则创建
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
  1. 安装docker版本paddlepaddle
# 下载完镜像后,可用命令 docker inspect  查看镜像创建时间
docker pull paddlepaddle/paddle:2.5.1-gpu-cuda11.2-cudnn8.2-trt8.0
在容器中安装PaddleSpeech
  1. 创建Docker-Compose.yml
cd
vim docker-compose.yml
# 内容如下
services:
  paddlespeech:
    image: paddlepaddle/paddle:2.5.1-gpu-cuda11.2-cudnn8.2-trt8.0
    container_name: paddle251
    network_mode: host
    entrypoint: ["/bin/bash", "/home/docker-entrypoint.sh"]
    volumes:
      - /root/docker-entrypoint.sh:/home/docker-entrypoint.sh
      - /root/tests:/paddle
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]
    restart: always
  1. 写一个入口脚本
vim docker-entrypoint.sh
# 内容如下:
#!/bin/bash
while true
do
    echo "loop forever, sleep 3600"
    sleep 3600
done
  1. 启动paddlepaddle容器
Docker Compose up -d
  1. 进入容器
# 查看容器,STATUS下面如果是 "Up ..." 表示容器启动成功
docker ps
# 进入容器
docker exec -it paddle251 /bin/bash
  1. 安装PaddleSpeech,推荐编译安装
# 克隆
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
cd PaddleSpeech
mkdir ~/.pip
echo -e '[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\ntrusted-host = pypi.tuna.tsinghua.edu.cn' > ~/.pip/pip.conf
pip install -U 'pip>21.0,>> from paddlespeech.cli.asr.infer import ASRExecutor
>>> asr = ASRExecutor()
>>> result = asr(audio_file="zh.wav")
>>> print(result)
我认为跑步最重要的就是给我带来了身体健康
  1. 语音合成

    命令行一键体验

paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!" --output output.wav

Python API 一键预测

>>> from paddlespeech.cli.tts.infer import TTSExecutor
>>> tts = TTSExecutor()
>>> tts(text="今天天气十分不错。", output="output.wav")
  1. 声音分类

    命令行一键体验

paddlespeech cls --input zh.wav

Python API 一键预测

>>> from paddlespeech.cli.cls.infer import CLSExecutor
>>> cls = CLSExecutor()
>>> result = cls(audio_file="zh.wav")
>>> print(result)
Speech 0.9027186632156372
  1. 声纹提取

    命令行一键体验

paddlespeech vector --task spk --input zh.wav

Python API 一键预测

>>> from paddlespeech.cli.vector import VectorExecutor
>>> vec = VectorExecutor()
>>> result = vec(audio_file="zh.wav")
>>> print(result) # 187维向量
[ -0.19083306   9.474295   -14.122263    -2.0916545    0.04848729
   4.9295826    1.4780062    0.3733844   10.695862     3.2697146
  -4.48199     -0.6617882   -9.170393   -11.1568775   -1.2358263 ...]
  1. 标点恢复

    命令行一键体验

paddlespeech text --task punc --input 今天的天气真不错啊你下午有空吗我想约你一起去吃饭

Python API 一键预测

>>> from paddlespeech.cli.text.infer import TextExecutor
>>> text_punc = TextExecutor()
>>> result = text_punc(text="今天的天气真不错啊你下午有空吗我想约你一起去吃饭")
今天的天气真不错啊!你下午有空吗?我想约你一起去吃饭。
  1. 语音翻译

    命令行一键体验

    使用预编译的 kaldi 相关工具,只支持在 Ubuntu 系统中体验

paddlespeech st --input en.wav

Python API 一键预测

>>> from paddlespeech.cli.st.infer import STExecutor
>>> st = STExecutor()
>>> result = st(audio_file="en.wav")
['我 在 这栋 建筑 的 古老 门上 敲门 。']
  1. 测试中可能遇到 UserWarning 警告,可以不管,或者用 warnings.filterwarnings(“ignore”, category=WarningCategory) 屏蔽

更多测试用例见 这里,使用服务见 这里

参考:

https://www.cnblogs.com/iyiluo/p/17688647.html

微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon