PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

(图片来源网络,侵删)
在数字时代,隐私保护已成为全球关注的焦点。隐私计算作为解决数据隐私问题的关键技术,其核心目标是在不泄露个人或敏感信息的前提下,实现数据的计算和分析。在这一领域,零知识证明(Zero-Knowledge Proof, ZKP)和同态加密(Homomorphic Encryption, HE)扮演着至关重要的角色。本文将深入探讨这两种技术如何在隐私计算中发挥作用,以及它们之间的异同。
零知识证明:隐私与验证的平衡艺术
零知识证明是一种精妙的密码学构造,它允许一方向另一方证明某个陈述是正确的,而无需透露任何有用的信息。这意味着验证者只能确认陈述的真实性,却学不到任何额外的知识。

(图片来源网络,侵删)
工作原理
零知识证明的核心在于交互式协议,其中包括两个主要阶段:承诺阶段和验证阶段。在承诺阶段,证明者生成并提交一个承诺,这个承诺“锁定”了即将证明的陈述,但并不揭露任何信息。在验证阶段,证明者对验证者提出的挑战进行响应,验证者根据响应判断陈述的真实性。
应用场景
- 金融服务:在反洗钱(AML)和客户身份识别(KYC)流程中,用户可以证明其符合某些条件,而不必泄露个人详细信息。
- 区块链:在如Zcash等系统中,用户可以进行隐私交易,隐藏交易金额和参与方信息。
同态加密:安全计算的魔法
同态加密是一种允许对加密数据进行操作,且操作结果在解密后与原始数据操作结果相同的加密方法。这种技术使得数据在加密状态下也能被有效利用。
工作原理
同态加密的关键特性是其支持算术运算。这意味着可以在不解密的情况下对加密数据执行加法和乘法运算。同态加密主要分为三种类型:部分同态(仅支持加法或乘法中的一种)、全同态(同时支持加法和乘法)和某种程度的同态(介于前两者之间)。
应用场景