【Python实用技能】爬虫升级之路:从专用爬虫到用AI Agent实现通用网络爬虫(适合小白)

慈云数据 2024-05-01 技术支持 55 0
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习,持续干货输出。
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

    本站文章一览:

    在这里插入图片描述


    目前为止,我们已经写了几个爬虫程序,能将网页中的内容提取出来,或者保存成PDF。本文来总结一下这些方法,循序渐进地带大家看下爬虫的实现方法:从单个网页爬虫,到利用大模型提取指定信息,到利用AI Agent实现自动编写爬虫代码实现通用爬虫。

    在这里插入图片描述

    说明:本人爬虫小白,所以 这篇文章总结的是简单的爬虫程序,可以直接使用的程序 。没有复杂的操作,也没有深入的理解。适合爬虫小白或只是将爬虫作为一个数据来源的非专业人员。想要深入理解爬虫原理的同学,可以退出了。

    文章目录

    • 0. 单网页的专用爬虫实现方法
      • 0.1 基本的爬虫程序实现方法
      • 0.2 利用 Selenium 实现爬虫
      • 0.3 利用 LangChain 爬取网页内容
        • 0.3.1 Loading + Transforming
        • 0.3.2 WebBaseLoader
        • 1. 利用大模型直接提取指定信息的探索
        • 2. 利用AI Agent实现通用爬虫
          • 2.1 实现思路
          • 2.2 自动化爬虫代码生成器
          • 2.3 可能遇到的问题
          • 3. 总结

            0. 单网页的专用爬虫实现方法

            这种爬虫是针对特定网页的数据爬取,可以是一个网页,或者是一系列结构相似的网页。

            这种爬虫的实现方法,最主要的是,需要打开网页,F12调试,然后找自己需要的文本内容在HTML中的Tag或Class。

            0.1 基本的爬虫程序实现方法

            如果你会一点爬虫基础,那看到网页结构,应该就知道怎么利用 BeautifulSoup 写一个简单的爬虫程序了。但是如果你一点爬虫基础也没有,不知该如何下手呢?可以利用ChatGPT、文心一言、智谱清言等工具帮你。保姆级操作教程可看下面的文章:

            • 【提效】让GPT帮你写爬虫程序,不懂爬虫也能行

              文章中包含了如何找到你需要的文本内容在HTML结构中的Tag、class,如何给大模型Prompt和交互等:

              在这里插入图片描述

              【AI大模型应用开发】【LangChain系列】实战案例2:通过URL加载网页内容 - LangChain对爬虫功能的封装

              前面的文章,我们利用LangChain实现了URL网页数据的提取。但是今天想用它抓取微信公众号文章的数据时,失败了。

              之前利用 LangChain 实现URL网页数据提取的文章可见:

              • 【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源

                0.2 利用 selenium 实现爬虫

                我们在 【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用) 这篇文章中通过 selenium 实现了自动将网页保存为PDF的功能。其实利用 selenium 也可以直接从网页中提取想要的内容。

                下面的示例代码中,通过selenium模拟打开网页,通过 xpath 爬取指定元素。

                import os,json,time
                from selenium import webdriver
                 
                def crawel_url(url):
                    
                    # 创建Chrome WebDriver对象
                    driver = webdriver.Chrome()
                 
                    print('-'*100)
                    print(f'now: url: {url}')
                    driver.get(url)
                 
                    # 添加适当的等待时间或条件,确保页面已完全加载
                    from selenium.webdriver.support.ui import WebDriverWait
                    from selenium.webdriver.support import expected_conditions as EC
                    # 等待10秒钟,直到某个元素可见
                    wait = WebDriverWait(driver, 10)
                    element = driver.find_element("xpath", "/html/body/div[1]/div[2]/div[1]/div/div[1]/div[2]")
                    content = element.text
                    print(content)
                    driver.close()
                 
                url_list =[
                    'https://mp.weixin.qq.com/s/2m8MrsCxf5boiH4Dzpphrg',
                ]
                for url in url_list:
                    crawel_url(url)
                    time.sleep(5)
                

                xpath的获取方法如下:

                在这里插入图片描述

                找到你想提取的此网页的数据,在F12调试面板中,在该元素位置鼠标右键 —> 复制 —> 复制完整 XPath,替换掉上面程序中的xpath。

                运行结果(看起来效果还不错):

                在这里插入图片描述

                0.3 利用 LangChain 爬取网页内容

                目前为止,我们接触了两种利用 LangChain 来获取网页内容的方法。

                0.3.1 Loading + Transforming

                第一种方法是使用 LangChain 的 Loading 模块加载HTML网页,利用 Transforming 模块将HTML结构转换为文本。

                其 Loading 模块可以使用 AsyncHtmlLoader 或 AsyncChromiumLoader,Transforming模块可以使用 HTML2Text 或 BeautifulSoup。

                具体使用方法可看这篇文章的前半部分:

                • 【AI大模型应用开发】【LangChain系列】实战案例2:通过URL加载网页内容 - LangChain对爬虫功能的封装

                  在这里插入图片描述

                  0.3.2 WebBaseLoader

                  另一种使用 LangChain 获取网页内容的方法是使用其中的 WebBaseLoader 类。我们在 【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源 使用过:

                  loader = WebBaseLoader(
                      web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
                      bs_kwargs=dict(
                          parse_only=bs4.SoupStrainer(
                              class_=("post-content", "post-title", "post-header")
                          )
                      ),
                  )
                  docs = loader.load()
                  

                  这其实是对第一种方法的一种高层封装,将第一种方法中的两个步骤合并在了一起。

                  小结:单网页的专用爬虫实现方法,目前我们用过的就这几个,可以看到,无论用哪种方法,都躲不过需要我们手动去 F12 调试页面,分析HTML的结构,找到文本内容的Tag或Class。换一个网页,这些Tag或Class可能就不通用了,需要重新分析结构,查找 Tag和Class。

                  1. 利用大模型直接提取指定信息的探索

                  上面虽然利用了大模型帮我们生成Python代码,但代码不通用,如何利用大模型将这个过程通用化呢?我们也做过探索:

                  • 【AI大模型应用开发】【LangChain系列】实战案例2:通过URL加载网页内容 - LangChain对爬虫功能的封装

                    在这里插入图片描述

                    在这篇文章的后半部分,我们就利用了 LangChain 中的 create_extraction_chain 来尝试创建一个从网页内容中提取特定内容的通用爬虫。

                    其主要代码如下:

                    schema = {
                        "properties": {
                            "article_title": {"type": "string"},
                            "article_content": {"type": "string"},
                            "article_example_python_code": {"type": "string"},
                        },
                        "required": ["article_title", "article_content", "article_example_python_code"],
                    }
                    def extract(content: str, schema: dict):
                        return create_extraction_chain(schema=schema, llm=llm).run(content)
                    

                    最主要的是 schema 的定义,因为这是告诉LLM我们想要什么样的信息。所以,尽可能详细。其实现原理也比较明确,就是内部将 schema 转换成了 OpenAI 的 function calling 的结构,利用 Function Calling 能力来提取信息。

                    具体的操作步骤和原理解释可以看下上面链接中的文章。

                    小结:这种方式在获取到网页全部内容后,利用大模型从全部内容中提取出我们需要的信息。不需要知道想要信息的 Tag 和 Class,因此具有一定的通用性。但是效果好坏,完全取决于大模型的能力和我们自己定义的schema内容。目前来看,有点用,但想真正能用,还是非常难的。

                    2. 利用AI Agent实现通用爬虫

                    2.1 实现思路

                    实现真正能够通用的爬虫,我们将目光放到 AI Agent 上。正好,前段时间学习 MetaGPT,里面的教程中就有通用爬虫的实现,咱们借鉴一下。

                    具体的MetaGPT实现通用爬虫的详细步骤可以看这篇文章第3部分:【AI Agent系列】【MetaGPT】8. 一句话订阅专属信息 - 订阅智能体进阶,实现一个更通用的订阅智能体

                    在这里插入图片描述

                    它的 实现思路是先让大模型理解用户想要的数据内容,然后根据这些数据内容让大模型写爬虫代码,然后自动执行爬虫代码,获取相关文本内容。

                    2.2 自动化爬虫代码生成器

                    我将这个过程单独抽离了出来,自动写爬虫代码的完整代码如下:

                    import asyncio
                    from metagpt.tools.web_browser_engine import WebBrowserEngine
                    from metagpt.utils.common import CodeParser
                    from metagpt.utils.parse_html import _get_soup
                    from openai_test import openai_test
                    def get_outline(page):
                        soup = _get_soup(page.html)
                        outline = []
                        def process_element(element, depth):
                            name = element.name
                            if not name:
                                return
                            if name in ["script", "style"]:
                                return
                            element_info = {"name": element.name, "depth": depth}
                            if name in ["svg"]:
                                element_info["text"] = None
                                outline.append(element_info)
                                return
                            element_info["text"] = element.string
                            # Check if the element has an "id" attribute
                            if "id" in element.attrs:
                                element_info["id"] = element["id"]
                            if "class" in element.attrs:
                                element_info["class"] = element["class"]
                            outline.append(element_info)
                            for child in element.children:
                                process_element(child, depth + 1)
                        for element in soup.body.children:
                            process_element(element, 1)
                        return outline
                    async def test(url, query):
                        page = await WebBrowserEngine().run(url)
                        
                        outline = get_outline(page)
                        outline = "\n".join(
                            f"{' '*i['depth']}{'.'.join([i['name'], *i.get('class', [])])}: {i['text'] if i['text'] else ''}"
                            for i in outline
                        )
                        
                        # print(outline)
                        
                        PROMPT_TEMPLATE = """Please complete the web page crawler parse function to achieve the User Requirement. The parse \
                        function should take a BeautifulSoup object as input, which corresponds to the HTML outline provided in the Context.
                        ```python
                        from bs4 import BeautifulSoup
                        # only complete the parse function
                        def parse(soup: BeautifulSoup):
                            ...
                            # Return the object that the user wants to retrieve, don't use print
                        ```
                        ## User Requirement
                        {requirement}
                        ## Context
                        The outline of html page to scrabe is show like below:
                        ```tree
                        {outline}
                        ```
                        """
                        
                        code_rsp = openai_test.get_chat_completion(PROMPT_TEMPLATE.format(outline=outline, requirement=query))
                        code = CodeParser.parse_code(block="", text=code_rsp)
                        
                        print(code)
                        
                    asyncio.run(test("https://mp.weixin.qq.com/s/2m8MrsCxf5boiH4Dzpphrg", "获取标题,正文中的所有问题,正文中的代码"))
                    

                    其步骤可总结如下:

                    (1)通过WebBrowserEngine 获得URL的HTML结构: page = await WebBrowserEngine().run(url)

                    (2)通过get_outline获取出该HTML网页的主体结构,这是为了消除原HTML中的无用数据,同时减少Token消耗: outline = get_outline(page)

                    (3)将 outline 和 用户的需求数据 组成 Prompt,给大模型,让大模型写代码:code_rsp = openai_test.get_chat_completion(PROMPT_TEMPLATE.format(outline=outline, requirement=query))

                    其最终运行结果如下(最终输出的是针对此url和用户需求的爬虫代码):

                    def parse(soup: BeautifulSoup):
                        title = soup.find('h1', class_='rich_media_title').text
                        questions = []
                        codes = []
                        sections = soup.find_all('section')
                        for section in sections:
                            blocks = section.find_all(['p', 'h2', 'h3', 'pre', 'ul', 'blockquote'])
                            for block in blocks:
                                text = block.get_text(strip=True)
                                if text:
                                    if block.name == 'p' or block.name == 'h2' or block.name == 'h3':
                                        if text not in ['公众号内文章一览', '原创', '同学小张', '2024-03-13 08:00', '北京']:
                                            questions.append(text)
                                    if block.name == 'pre' or block.name == 'ul' or block.name == 'blockquote':
                                        codes.append(text)
                        return {
                            'title': title,
                            'questions': questions,
                            'codes': codes
                        }
                    

                    运行该爬虫代码看下大模型写的代码的效果,测试程序如下:

                    import asyncio
                    from metagpt.tools.web_browser_engine import WebBrowserEngine
                    from bs4 import BeautifulSoup
                    def parse(soup: BeautifulSoup):
                        title = soup.find('h1', class_='rich_media_title').text
                        questions = []
                        codes = []
                        sections = soup.find_all('section')
                        for section in sections:
                            blocks = section.find_all(['p', 'h2', 'h3', 'pre', 'ul', 'blockquote'])
                            for block in blocks:
                                text = block.get_text(strip=True)
                                if text:
                                    if block.name == 'p' or block.name == 'h2' or block.name == 'h3':
                                        if text not in ['公众号内文章一览', '原创', '同学小张', '2024-03-13 08:00', '北京']:
                                            questions.append(text)
                                    if block.name == 'pre' or block.name == 'ul' or block.name == 'blockquote':
                                        codes.append(text)
                        return {
                            'title': title,
                            'questions': questions,
                            'codes': codes
                        }
                    async def test(url):
                        page = await WebBrowserEngine().run(url)
                        result = parse(page.soup)
                        
                        print(result)
                        
                    asyncio.run(test("https://mp.weixin.qq.com/s/2m8MrsCxf5boiH4Dzpphrg"))
                    

                    运行结果:

                    在这里插入图片描述

                    该爬虫程序将网页内容提取成了用户需求的那三个字段:题目、正文问题(文字)、正文代码,效果还是很不错的。

                    当然,我们上面是手动将爬虫代码粘贴出来测试的,在AI Agent中,直接再加一个Agent,让其专门自动运行此代码,就完成了通用爬虫的过程(这也是上文链接文章中的做法):用户全程只需输入一个Url和想要的数据,然后就能拿到想要的内容了,而且效果比上面第1节中利用大模型直接提取指定信息的方法要好得多。

                    2.3 可能遇到的问题

                    虽然我们上面通过 get_outline 对HTML内容进行了精简,但还是存在超过大模型 Token 数限制的情况,这种情况就无法生成爬虫代码,而是报下面的错误:

                    在这里插入图片描述

                    解决这种情况的方法也简单,限制下最终 Prompt 的 Token 数就好了(简单粗暴),这些 Token 已经足以表达 HTML 的结构了。

                    if (len(prompt) > 16000):
                        prompt = prompt[0:16000]
                    

                    3. 总结

                    本文我们盘点了目前为止我使用过的所有爬虫代码,分析了它们的实现方法。从专用爬虫,到大模型直接提取指定信息的通用爬虫探索,再到最终的利用 AI Agent 实现通用爬虫,逐步递进,总能让你收获点东西。

                    本文中的代码和关联文章中的代码都是我亲测可用的,可以直接拿去用。

                    题外话:在运行过程中,LangChain 和 MetaGPT 中的相关封装类,底层有使用 Playwright 来进行网页数据获取,所以,你可能需要安装下 Playwright 环境。我在这上面踩了不少坑,如果你需要,可以看这篇文章避下坑:【云服务环境】含泪总结:我在云服务安装Python爬虫环境Playwright的踩坑实录

                    如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


                    • 大家好,我是 同学小张,日常分享AI知识和实战案例
                    • 欢迎 点赞 + 关注 👏,持续学习,持续干货输出。
                    • +v: jasper_8017 一起交流💬,一起进步💪。
                    • 微信公众号也可搜【同学小张】 🙏

                      本站文章一览:

                      在这里插入图片描述

微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon