【模板】单源最短路径(标准版)
题目描述
给定一个 n n n 个点, m m m 条有向边的带非负权图,请你计算从 s s s 出发,到每个点的距离。
数据保证你能从 s s s 出发到任意点。
输入格式
第一行为三个正整数 n , m , s n, m, s n,m,s。
第二行起 m m m 行,每行三个非负整数 u i , v i , w i u_i, v_i, w_i ui,vi,wi,表示从 u i u_i ui 到 v i v_i vi 有一条权值为 w i w_i wi 的有向边。
输出格式
输出一行 n n n 个空格分隔的非负整数,表示 s s s 到每个点的距离。
样例 #1
样例输入 #1
4 6 1 1 2 2 2 3 2 2 4 1 1 3 5 3 4 3 1 4 4
样例输出 #1
0 2 4 3
提示
1 ≤ n ≤ 1 0 5 1 \leq n \leq 10^5 1≤n≤105;
1 ≤ m ≤ 2 × 1 0 5 1 \leq m \leq 2\times 10^5 1≤m≤2×105;
s = 1 s = 1 s=1;
1 ≤ u i , v i ≤ n 1 \leq u_i, v_i\leq n 1≤ui,vi≤n;
0 ≤ w i ≤ 1 0 9 0 \leq w_i \leq 10 ^ 9 0≤wi≤109,
0 ≤ ∑ w i ≤ 1 0 9 0 \leq \sum w_i \leq 10 ^ 9 0≤∑wi≤109。
原题
洛谷P4779——传送门
![洛谷 P4779 [模板] 单源最短路径 题解 dijkstra算法](https://www.ciyundata.com/zb_users/upload/2024/04/20240427022029171415562921624.jpeg)
代码
#include
using namespace std;
#define max_Heap(x) priority_queue
#define min_Heap(x) priority_queue
typedef long long ll;
typedef unsigned long long ull;
typedef pair PII;
typedef pair PLL;
const double PI = acos(-1);
const int maxn = 1e5 + 6;
const int maxm = 5e5 + 6;
struct edge
{
int to, len; // to为边的指向,len为边的长度即边权
};
vector e[maxn]; // 存储以点i为起点的边
struct node
{
ll dis; // dis为目前到该点的最短路长度
int num; // num为该点序号
bool operator>(const node &a) const // 小根堆中的大于号重载
{
return dis > a.dis;
}
};
ll minDis[maxn]; // 从起点到第i个点的最短路长度
bool vis[maxn]; // 第i个点是否已确定最短路长度
priority_queue pq; // 还未确定最短路长度的点存放在小根堆中
void dijkstra(int n, int s) // n为点的个数,s为起点
{
memset(minDis, 0x3f, sizeof(minDis)); // 将最短路距离初始化为无穷大
minDis[s] = 0; // 起点到起点的最短路长度为0
pq.push({0, s});
while (!pq.empty())
{
int u = pq.top().num; // 有向边的起点
pq.pop();
if (vis[u]) // 若该点已确定最短路长度,跳过
continue;
vis[u] = 1;
for (edge eg : e[u]) // 遍历以该点为起点的所有有向边
{
int v = eg.to;
int w = eg.len;
if (minDis[v] > minDis[u] + w) // 更新最短路长度
{
minDis[v] = minDis[u] + w;
pq.push({minDis[v], v});
}
}
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, m, s; // 点的个数,有向边的个数,出发点的编号
cin >> n >> m >> s;
int u, v, w; // 从u到v的权值为w的有向边
while (m--)
{
cin >> u >> v >> w;
e[u].push_back({v, w});
}
dijkstra(n, s);
for (int i = 1; i
if (i != n)
cout 

