0.准备工作
Windows本机安装CUDA Driver
首先去下载页面下载驱动文件
点击Get CUDA Driver进入下载页面,我看下载页面跟普通驱动下载页面相同,感觉应该不是单独的驱动,只要之前显卡已经安装好了CUDA的驱动,就可以先省略这一步。
1.安装Windows子系统
win11中安装wsl子系统非常方便,只需要执行一个命令即可,系统会自动安装Ubuntu系统,执行完之后需要重启电脑,重启后需要设置用户名和密码,根据自己实际情况设置即可。
wsl --install
安装完重启电脑设置完账号密码后,会看到如下页面:
这时候就可以操作Linux系统了
2.WSL安装CUDA Toolkit
官方的教程地址:https://docs.nvidia.com/cuda/wsl-user-guide/index.html
进入官方下载地址:https://developer.nvidia.com/cuda-toolkit-archive
根据自己安装的CUDA驱动版本选择CUDA Toolkit版本,这里最好与主机的驱动版本一致,否则不知道会出现什么奇怪错误。
去wsl命令行执行wget命令,可以直接在linux系统上下载Toolkit,然后执行安装命令
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run sudo sh cuda_12.2.0_535.54.03_linux.run
安装时可能会报错:Failed to verify gcc version. See log at /var/log/cuda-installer.log for details.
这是因为我们的wsl系统刚刚创建,可能没有安装gcc导致的,可以参考这篇文章解决。
这里也贴一下吧
sudo apt update && sudo apt upgrade -y sudo apt install build-essential # 查看安装的gcc版本 gcc --version
然后再执行上面的安装程序,安装完之后打印了下面的信息
=========== = Summary = =========== Driver: Not Selected Toolkit: Installed in /usr/local/cuda-12.2/ Please make sure that - PATH includes /usr/local/cuda-12.2/bin - LD_LIBRARY_PATH includes /usr/local/cuda-12.2/lib64, or, add /usr/local/cuda-12.2/lib64 to /etc/ld.so.conf and run ldconfig as root To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.2/bin ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 535.00 is required for CUDA 12.2 functionality to work. To install the driver using this installer, run the following command, replacing with the name of this run file: sudo .run --silent --driver Logfile is /var/log/cuda-installer.log
这里的warning可以不用处理,官方文档上说不需要安装driver
安装完成之后需要将路径加入到环境变量中:
export PATH=/usr/local/cuda-12.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH
3.安装cuDNN(可选)
NVIDIA CUDA® 深度神经网络库 (cuDNN) 是一个 GPU 加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反向卷积、池化层、归一化和激活层)。
全球的深度学习研究人员和框架开发者都依赖 cuDNN 来实现高性能 GPU 加速。借助 cuDNN,研究人员和开发者可以专注于训练神经网络及开发软件应用,而不必花时间进行低层级的 GPU 性能调整。cuDNN 可加速广泛应用的深度学习框架,包括 Caffe2、Chainer、Keras、MATLAB、MxNet、PaddlePaddle、PyTorch 和 TensorFlow。如需获取经 NVIDIA 优化且已在框架中集成 cuDNN 的深度学习框架容器,请访问 NVIDIA GPU CLOUD 了解详情并开始使用。
下载地址:https://developer.nvidia.cn/cudnn 或 https://developer.nvidia.com/rdp/cudnn-archive#a-collapse896-120
在运行PyTorch训练和推理时,通常需要安装cuDNN,但并非绝对必要。cuDNN是一个GPU加速的深度神经网络库,能够以高度优化的方式实现标准例程,如前向和反向卷积、池化层、归一化和激活层。
在某些情况下,部分深度学习框架会将CUDA、CUDNN打包在whl包里,因此无需手动安装。例如,PyTorch的大部分版本就是这样,所以无需手动安装。
4.修改WSL安装路径
显然,此时的wsl默认安装在c盘,随着系统的使用,会占用我们C盘的空间,所以我们将其打包放到其它盘去。
1.查看WSL发行版本
在Windows PowerShell中输入命令:
wsl -l --all -v
PS C:\Users\Admin> wsl -l --all -v NAME STATE VERSION * Ubuntu Stopped 2
2.导出分发版为tar文件到d盘
wsl --export Ubuntu d:\wsl-ubuntu20.04.tar(Ubuntu修改成你现在的发行版名称)
3.注销当前分发版
wsl --unregister Ubuntu (Ubuntu修改成你现在的发行版名称)
4.重新导入并安装WSL在d:\wsl-ubuntu20.04(可以修改成你自己想要的目录)
wsl --import Ubuntu d:\wsl-ubuntu20.04 d:\wsl-ubuntu20.04.tar --version 2
5.设置默认登陆用户为安装时用户名
Ubuntu config --default-user Username
6.删除tar文件(可选)
del d:\wsl-ubuntu20.04.tar
参考文档
5.WSL与主机传输文件
从windows拷贝文件到WSL
先查看目录挂载情况
sudo ls /mnt/*
找到文件,拷贝到当前目录
cp /mnt/盘符/文件 .
附WSL官方文档地址:https://learn.microsoft.com/zh-cn/windows/wsl/
参考文章:https://zhuanlan.zhihu.com/p/436393852