【人工智能】实验四:遗传算法求函数最大值实验与基础知识

慈云数据 2024-04-02 技术支持 164 0

实验四:遗传算法求函数最大值实验

实验目的

熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传算法求解函数优化问题,理解求解流程并测试主要参数对结果的影响。

实验内容

采用遗传算法求解函数最大值。

实验要求

1. 用遗传算法求解下列函数的最大值,设定求解精度到15位小数。

在这里插入图片描述

(1)给出适应度函数(Fitness Function)代码。

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(42)
# 目标函数
def objective_function(x, y):
    return ((6.452 * (x + 0.125 * y) * (np.cos(x) - np.cos(2 * y)) ** 2) / np.sqrt(
        (0.8 + (x - 4.2) ** 2 + 2 * (y - 7)) ** 2)) + 3.226 * y
# 适应度函数
def fitness_function(x, y):
    return -objective_function(x, y)

(2)给出最佳适应度(best fitness)和最佳个体(best individual)图。在这里插入图片描述

在这里插入图片描述

(3)使用相同的初始种群,设置不同的种群规模,如5、20和100,初始种群的个体取值范围为[0,10],其他参数同表1,然后求得相应的最佳适应度、平均适应度和最佳个体,填入表2,分析种群规模对算法性能的影响。

(4)设置种群规模为20,初始种群的个体取值范围为[0,10],选择不同的选择操作、交叉操作和变异操作,其他参数同表1,然后独立运行算法10次,完成表3,并分析比较采用不同的选择策略、交叉策略和变异策略的算法运行结果。

表1 遗传算法参数选择

| 编码 | 编码方式 | 实数编码 |
| ---- | -------- | -------- |
| 种群参数 | 种群规模(population size) | |
| | 初始种群的个体取值范围(initial range) | [0, 10] |
| 选择操作 | 个体选择概率分配策略(fitness scaling) | 将适应度值映射到概率空间上,采用倒数变换对适应度值进行缩放 |
| | 个体选择方法(selection function) | 轮盘赌选择方法 |
| 最佳个体保存 | 优良个体保存数量(elite count) | 每一代只保留最佳个体一个 |
| 交叉操作 | 交叉概率(crossover fraction) | 0.8 |
| | 交叉方式(crossover function) | 单点交叉 |
| 变异操作 | 变异方式(mutation function) | 均匀变异 |
| 停止参数 | 最大迭代步数(generations) | 100 |
| | 最大运行时间限制(time limit) | |
| | 最小适应度限制(fitness limit) | |
| | 停滞代数(stall generations) | 10 |
| | 停滞时间限制(stall time limit) | |

表2 不同的种群规模的GA运行结果

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
# 目标函数
def objective_function(x, y):
    return ((6.452 * (x + 0.125 * y) * (np.cos(x) - np.cos(2 * y)) ** 2) / np.sqrt(
        (0.8 + (x - 4.2) ** 2 + 2 * (y - 7)) ** 2)) + 3.226 * y
# 适应度函数
def fitness_function(x, y):
    return -objective_function(x, y)
# 遗传算法框架
def genetic_algorithm(population_size, generations, crossover_rate, mutation_rate, search_range):
    # 初始化种群
    population = np.random.uniform(low=search_range[0], high=search_range[1], size=(population_size, 2))
    best_fitness_history = []
    best_individual_history = []
    for generation in range(generations):
        # 计算适应度
        fitness_values = np.array([fitness_function(x, y) for x, y in population])
        # Check for NaN values and handle them
        if np.isnan(fitness_values).any() or np.ptp(fitness_values) == 0:
            print(f"Warning: Invalid fitness values encountered in generation {generation}.")
            break
        # 选择操作:使用适应度函数正规化版本作为选择概率
        normalized_fitness = (fitness_values - np.min(fitness_values)) / (
                    np.max(fitness_values) - np.min(fitness_values))
        # Check for NaN values after normalization
        if np.isnan(normalized_fitness).any():
            print(f"Warning: NaN values encountered in normalized fitness in generation {generation}.")
            break
        # Continue with the selection operation
        selection_probabilities = normalized_fitness / np.sum(normalized_fitness)
        # 修正选择操作
        selected_indices = np.random.choice(np.arange(len(population)), size=population_size, replace=True,
                                            p=selection_probabilities)
        selected_population = population[selected_indices]
        # 交叉操作:单点交叉
        crossover_indices = np.random.choice(population_size, size=population_size // 2, replace=False)
        crossover_pairs = selected_population[crossover_indices]
        crossover_points = np.random.rand(population_size // 2, 1)
        # 修正交叉操作
        crossover_offspring = np.zeros_like(crossover_pairs)
        for i in range(crossover_pairs.shape[0]):
            crossover_offspring[i] = crossover_pairs[i, 0] * (1 - crossover_points[i]) + crossover_pairs[i, 1] * \
                                     crossover_points[i]
        # 变异操作:均匀变异
        mutation_mask = np.random.rand(population_size, 2)  

种群规模: 5

最佳适应度: -3.459847944541263

平均适应度: -10.320198206011602

最佳个体: [0.62975422 0.62975422]

种群规模: 20

最佳适应度: 0.6871155254100445

平均适应度: -2.9636119559269036

最佳个体: [-0.21263061 -0.21263061]

种群规模: 100

最佳适应度: 0.21963356289505687

平均适应度: -6.572041991467105

最佳个体: [-0.06808081 -0.06808081]

表2 不同的种群规模的GA运行结果

种群规模 最佳适应度 平均适应度 最佳个体

5 -3.459847944541263 -10.320198206011602 [0.62975422 0.62975422]

20 0.6871155254100445 -2.9636119559269036 [-0.21263061 -0.21263061]

100 0.21963356289505687 -6.572041991467105 [-0.06808081 -0.06808081]

表3 不同的选择策略、交叉策略和变异策略的算法运行结果

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
# 目标函数
def objective_function(x, y):
    return ((6.452 * (x + 0.125 * y) * (np.cos(x) - np.cos(2 * y)) ** 2) / np.sqrt(
        (0.8 + (x - 4.2) ** 2 + 2 * (y - 7)) ** 2)) + 3.226 * y
# 适应度函数
def fitness_function(x, y):
    return objective_function(x, y)
# 遗传算法框架
def genetic_algorithm(population_size, generations, crossover_rate, mutation_rate, search_range):
    # 初始化种群
    population = np.random.uniform(low=search_range[0], high=search_range[1], size=(population_size, 2))
    best_fitness_history = []
    best_individual_history = []
    for generation in range(generations):
        # 计算适应度
        fitness_values = np.array([fitness_function(x, y) for x, y in population])
        # Check for NaN values and handle them
        if np.isnan(fitness_values).any() or np.ptp(fitness_values) == 0:
            print(f"Warning: Invalid fitness values encountered in generation {generation}.")
            break
        # 选择操作:使用适应度函数正规化版本作为选择概率
        normalized_fitness = (fitness_values - np.min(fitness_values)) / (
                    np.max(fitness_values) - np.min(fitness_values))
        # Check for NaN values after normalization
        if np.isnan(normalized_fitness).any():
            print(f"Warning: NaN values encountered in normalized fitness in generation {generation}.")
            break
        # Continue with the selection operation
        selection_probabilities = normalized_fitness / np.sum(normalized_fitness)
        # 修正选择操作
        selected_indices = np.random.choice(np.arange(len(population)), size=population_size, replace=True,
                                            p=selection_probabilities)
        selected_population = population[selected_indices]
        # 交叉操作:单点交叉
        crossover_indices = np.random.choice(population_size, size=population_size // 2, replace=False)
        crossover_pairs = selected_population[crossover_indices]
        crossover_points = np.random.rand(population_size // 2, 1)
        # 修正交叉操作
        crossover_offspring = np.zeros_like(crossover_pairs)
        for i in range(crossover_pairs.shape[0]):
            crossover_offspring[i] = crossover_pairs[i, 0] * (1 - crossover_points[i]) + crossover_pairs[i, 1] * \
                                     crossover_points[i]
        # 变异操作:均匀变异
        mutation_mask = np.random.rand(population_size, 2)  

最好适应度 7594.27 15782.25 3339.39 1474.26

最差适应度 268.94 439.60 193.71 306.33

平均适应度 4335.11 2712.38 769.43 1057.48

2、用遗传算法求解下面Rastrigin函数的最小值,设定求解精度到15位小数。

在这里插入图片描述

(1)给出适应度函数代码。

(2)设计上述问题的编码、选择操作、交叉操作、变异操作以及控制参数等,填入表4,并画出最佳适应度和最佳个体图。

import time
import numpy as np
from matplotlib import pyplot as plt
# Rastigrin函数
def rastrigin_function(x1, x2):
    return -(20 + x1**2 + x2**2 - 10 * (np.cos(2 * np.pi * x1) + np.cos(2 * np.pi * x2)))
# 遗传算法框架
def genetic_algorithm(population_size, generations, crossover_rate, mutation_rate, search_range, time_limit=None, fitness_limit=None, stall_generations=None, stall_time_limit=None):
    population = np.random.uniform(low=search_range[0], high=search_range[1], size=(population_size, 2))
    best_fitness_history = []
    best_individual_history = []
    start_time = time.time()
    prev_best_fitness = None
    stall_count = 0
    for generation in range(generations):
        fitness_values = np.array([rastrigin_function(x[0], x[1]) for x in population])
        best_index = np.argmin(fitness_values)
        best_fitness = fitness_values[best_index]
        best_individual = population[best_index]
        best_fitness_history.append(best_fitness)
        best_individual_history.append(best_individual)
        # 判断是否终止算法
        if time_limit is not None and time.time() - start_time > time_limit:
            print("Time limit reached.")
            break
        if fitness_limit is not None and best_fitness = 0:
                print("Stall time limit reached.")
                break
        # 选择操作
        selection_probabilities = 1 / (fitness_values - np.min(fitness_values) + 1e-10)
        selection_probabilities /= np.sum(selection_probabilities)
        selected_indices = np.random.choice(np.arange(len(population)), size=population_size, replace=True, p=selection_probabilities)
        selected_population = population[selected_indices]
        # 交叉操作
        crossover_indices = np.random.choice(population_size, size=population_size // 2, replace=False)
        crossover_pairs = selected_population[crossover_indices]
        crossover_points = np.random.rand(population_size // 2, 1)
        crossover_offspring = np.zeros_like(crossover_pairs)
        for i in range(crossover_pairs.shape[0]):
            crossover_offspring[i] = crossover_pairs[i, 0] * (1 - crossover_points[i]) + crossover_pairs[i, 1] * crossover_points[i]
        # 变异操作
        mutation_mask = np.random.rand(population_size // 2, 2)  
表4 遗传算法参数选择

在这里插入图片描述

在这里插入图片描述

Best fitness: -64.62411370180945

Best individual: [3.51645639 3.51645639]

【实验思考及实践】

实验心得体会

遗传算法的基本思想: 遗传算法是一种启发式优化算法,其基本思想来源于自然界的进化过程,包括选择、交叉和变异等基本操作。在实验中,这些操作的合理设计对算法的性能至关重要。

适应度函数的设计: 适应度函数的选择直接影响算法的收敛性和准确性。在实验中,对于每个具体的问题,需要仔细设计适应度函数,使其能够准确反映问题的优劣。

种群规模的影响: 通过实验,可以观察到不同的种群规模对算法性能的影响。较小的种群规模可能导致算法陷入局部最优解,而较大的种群规模可能提高全局搜索能力,但也会增加计算成本。

选择策略、交叉策略和变异策略的比较: 实验中设计了不同的选择策略、交叉策略和变异策略,并进行了比较。结果表明,不同的策略组合对算法性能有着显著的影响,这强调了在实际问题中选择合适的操作的重要性。

实验结果的分析: 在观察实验结果时,需要结合问题的特点和算法设置进行深入分析。了解最佳适应度、最佳个体以及平均适应度的变化趋势,有助于理解算法的优势和局限性。

调整参数的灵活性: 在实际应用中,调整遗传算法的参数通常需要一定的经验和灵活性。根据实验结果,可以调整参数以提高算法性能,例如调整交叉率、变异率和种群规模等。

图形化展示: 通过绘制适应度曲线和个体分布图,可以直观地观察算法的收敛过程和搜索路径,有助于更好地理解算法的运行情况。

当然,下面是按照大纲填充的具体内容:

遗传算法介绍

简介

遗传算法(Genetic Algorithm,简称GA)是一种基于模拟自然进化过程的优化算法。它是由美国科学家约翰·霍兰德(John Holland)在20世纪70年代提出的。

基本原理

遗传算法的基本原理包括以下几个要素:

个体表示

遗传算法中的个体被抽象为基因组合的表示形式,通常用二进制编码或浮点数编码来表示。

适应度函数

适应度函数用于评估个体的适应度,它衡量了个体在解决问题中的优劣程度。

选择操作

选择操作根据个体的适应度,选择一部分个体作为父代,用于生成下一代个体。

交叉操作

交叉操作是指将选中的父代个体的基因进行交叉组合,生成新的子代个体。交叉操作的目的是产生具有多样性的后代个体。

变异操作

变异操作是对子代个体的基因进行随机变异,以增加种群的多样性。变异操作的目的是引入新的基因组合,以探索搜索空间。

算法流程

遗传算法的基本流程如下:

  1. 初始化种群:随机生成一组候选解作为初始种群。

  2. 评估适应度:根据问题的评价准则,计算每个个体的适应度。

  3. 选择操作:根据个体的适应度,选择一部分个体作为父代。

  4. 交叉操作:通过交叉操作,将选中的父代个体的基因进行交叉组合,生成新的子代个体。

  5. 变异操作:对子代个体的基因进行随机变异,以增加种群的多样性。

  6. 更新种群:将父代和子代个体合并,形成新的种群。

  7. 重复执行步骤2-6,直到满足终止条件(如达到预定的迭代次数或找到满意的解)。

特点与优点

遗传算法具有以下特点与优点:

  • 并行性:多个个体可以同时进行评估和操作,提高了算法的效率。

  • 自适应性:通过自然选择和变异操作,遗传算法具有自适应的能力,能够适应环境的变化。

  • 随机性:遗传算法中的选择、交叉和变异等操作都具有一定的随机性,能够避免陷入局部最优解。

  • 全局搜索能力:由于遗传算法的随机性和自适应性,它可以在整个搜索空间中进行全局搜索,从而找到较好的解。

    应用领域

    遗传算法在以下领域有着广泛的应用:

    • 函数优化:通过遗传算法可以在复杂的搜索空间中寻找函数的最优解。

    • 组合优化:遗传算法可以用于求解诸如旅行商问题、背包问题等组合优化问题。

    • 旅行商问题:遗传算法可以用于求解旅行商问题,找到最短路径。

    • 其他问题:遗传算法还可以应用于工程设计、机器学习、预测建模、调度问题等。它在各种领域中都能发挥优秀的搜索和优化能力。

      算法改进

      为了提高遗传算法的性能和效果,人们对其进行了一系列的改进和优化。以下是一些常见的算法改进方法:

      • 参数调节:通过合理设置遗传算法的参数,如种群大小、交叉率、变异率等,可以提高算法的性能。

      • 操作策略优化:对选择、交叉和变异等操作的策略进行优化,如采用更好的选择策略、交叉方式和变异方式,以提高算法的搜索能力。

      • 多种群算法:将种群划分为多个子种群,并在每个子种群中执行独立的遗传算法操作,可以增加种群的多样性,加快收敛速度。

      • 遗传算法与其他算法的结合:将遗传算法与其他优化算法,如模拟退火算法、粒子群优化算法等结合使用,可以充分利用各个算法的优点,提高解的质量和搜索效率。

        总结

        遗传算法是一种基于模拟自然进化过程的优化算法。它通过个体的基因表示、适应度函数评估、选择、交叉和变异等操作,模拟了生物进化的过程,并通过不断的迭代和进化找到问题的较优解。遗传算法具有并行性、自适应性、随机性和全局搜索能力等优点,在函数优化、组合优化、旅行商问题等领域有着广泛的应用。通过算法改进和与其他算法的结合,遗传算法的性能和效果可以进一步提升。

微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon