一. Openpcdet的安装以及使用
* Openpcdet详细内容请看以下链接:
GitHub - open-mmlab/OpenPCDet: OpenPCDet Toolbox for LiDAR-based 3D Object Detection.
1.首先gitclone原文代码
2. 这里我建议自己按照作者github上的docs/install文件夹下指示一步步安装,(之前根据csdn上教程一直有报错),然后下载spconv,以及cumm, github链接如下:
GitHub - traveller59/spconv: Spatial Sparse Convolution Library
GitHub - FindDefinition/cumm: CUda Matrix Multiply library.
3. 打开spconv中的readme,并且严格按照readme步骤安装,一般需要编译一段时间。
4. 打开cumm中readme,严格按照上面指示安装。
二. Openpcdet训练自己的数据集
* 本人移植其他的数据集,由于我有自己的image数据,已经按照kitti数据集的格式转换为velodyne, calib, label, image四个文件,并且实现了评估,以及最终的检测结果,所以可能和其他博主不一样。
* 如果你只有velodyne,label,或者数据集格式还不知道如何转换,文件建议参考以下这几个博主的链接:
Training using our own dataset · Issue #771 · open-mmlab/OpenPCDet · GitHub
OpenPCDet 训练自己的数据集详细教程!_JulyLi2019的博客-CSDN博客_openpcdet 数据集
3D目标检测(4):OpenPCDet训练篇--自定义数据集 - 知乎
Openpcdet-(2)自数据集训练数据集训练_花花花哇_的博客-CSDN博客
win10 OpenPCDet 训练KITTI以及自己的数据集_树和猫的博客-CSDN博客_openpcdet训练
这里首先总结以下主要涉及到以下三个文件的修改
* pcdet/datasets/custom/custom_dataset.py
* tools/cfgs/custom_models/pointpillar.yaml (也可以是其他模型)
* tools/cfgs/dataset_configs/custom_dataset.yaml
* demo.py
1.pcdet/datasets/custom/custom_dataset.py
其实custom_dataset.py只需要大家去模仿kitti_dataset.py去删改就可以了,而且大部分内容不需要用户修改,这里我修改了:
1)get_lidar函数
* 获取激光雷达数据,其他的get_image也类似
2) __getitem__函数
* 这个函数最重要,是获取数据字典并更新的关键
* 如果有些字典不需要可以删改,如calib,image等
3)get_infos函数
* 生成字典信息infos
infos={'image':xxx,
'calib': xxx,
'annos': xxx}
annos = {'name': xxx,
'truncated': xxx,
'alpha':xxx,
.............}
其中annos就是解析你的label文件生成的字典, 如类别名,是否被遮挡,bbox的角度
同理有些字典信息不需要可以增删
3) create_custom_infos函数
这个函数主要用来生成你的数据字典,一般以.pkl后缀,如果你不需要评估,可以将其中的评估部分删除,原理也很简单。
4) main函数中的类别信息
修改后的代码如下:
import copy import pickle import os from skimage import io import numpy as np from ..kitti import kitti_utils from ...ops.roiaware_pool3d import roiaware_pool3d_utils from ...utils import box_utils, common_utils, calibration_kitti, object3d_custom from ..dataset import DatasetTemplate class CustomDataset(DatasetTemplate): def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None, ext='.bin'): """ Args: root_path: dataset_cfg: class_names: training: logger: """ super().__init__( dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger ) self.split = self.dataset_cfg.DATA_SPLIT[self.mode] self.root_split_path = self.root_path / ('training' if self.split != 'test' else 'testing') split_dir = os.path.join(self.root_path, 'ImageSets', (self.split + '.txt')) # custom/ImagSets/xxx.txt self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if os.path.exists(split_dir) else None # xxx.txt内的内容 self.custom_infos = [] self.include_data(self.mode) # train/val self.map_class_to_kitti = self.dataset_cfg.MAP_CLASS_TO_KITTI self.ext = ext def include_data(self, mode): self.logger.info('Loading Custom dataset.') custom_infos = [] for info_path in self.dataset_cfg.INFO_PATH[mode]: info_path = self.root_path / info_path if not info_path.exists(): continue with open(info_path, 'rb') as f: infos = pickle.load(f) def get_label(self, idx): label_file = self.root_split_path / 'label_2' / ('%s.txt' % idx) assert label_file.exists() return object3d_custom.get_objects_from_label(label_file) def get_lidar(self, idx, getitem=True): if getitem == True: lidar_file = self.root_split_path + '/velodyne/' + ('%s.bin' % idx) else: lidar_file = self.root_split_path / 'velodyne' / ('%s.bin' % idx) return np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1, 4) def get_image(self, idx): """ Loads image for a sample Args: idx: int, Sample index Returns: image: (H, W, 3), RGB Image """ img_file = self.root_split_path / 'image_2' / ('%s.png' % idx) assert img_file.exists() image = io.imread(img_file) image = image.astype(np.float32) image /= 255.0 return image def get_image_shape(self, idx): img_file = self.root_split_path / 'image_2' / ('%s.png' % idx) assert img_file.exists() return np.array(io.imread(img_file).shape[:2], dtype=np.int32) def get_fov_flag(self, pts_rect, img_shape, calib): """ Args: pts_rect: img_shape: calib: Returns: """ pts_img, pts_rect_depth = calib.rect_to_img(pts_rect) val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] = 0, pts_img[:, 1] = 0) return pts_valid_flag def set_split(self, split): super().__init__( dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger ) self.split = split split_dir = self.root_path / 'ImageSets' / (self.split + '.txt') self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None custom_infos.extend(infos) self.custom_infos.extend(custom_infos) self.logger.info('Total samples for CUSTOM dataset: %d' % (len(custom_infos))) def __len__(self): if self._merge_all_iters_to_one_epoch: return len(self.sample_id_list) * self.total_epochs return len(self.custom_infos) def __getitem__(self, index): if self._merge_all_iters_to_one_epoch: index = index % len(self.custom_infos) info = copy.deepcopy(self.custom_infos[index]) sample_idx = info['point_cloud']['lidar_idx'] img_shape = info['image']['image_shape'] calib = self.get_calib(sample_idx) get_item_list = self.dataset_cfg.get('GET_ITEM_LIST', ['points']) input_dict = { 'frame_id': self.sample_id_list[index], 'calib': calib, } # 如果annos标签存在info的字典里 if 'annos' in info: annos = info['annos'] annos = common_utils.drop_info_with_name(annos, name='DontCare') loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y'] gt_names = annos['name'] gt_boxes_camera = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32) gt_boxes_lidar = box_utils.boxes3d_kitti_camera_to_lidar(gt_boxes_camera, calib) # 更新gtbox input_dict.update({ 'gt_names': gt_names, 'gt_boxes': gt_boxes_lidar }) if "gt_boxes2d" in get_item_list: input_dict['gt_boxes2d'] = annos["bbox"] # 获取fov视角的points if "points" in get_item_list: points = self.get_lidar(sample_idx, False) if self.dataset_cfg.FOV_POINTS_ONLY: pts_rect = calib.lidar_to_rect(points[:, 0:3]) fov_flag = self.get_fov_flag(pts_rect, img_shape, calib) points = points[fov_flag] input_dict['points'] = points input_dict['calib'] = calib data_dict = self.prepare_data(data_dict=input_dict) data_dict['image_shape'] = img_shape return data_dict def evaluation(self, det_annos, class_names, **kwargs): if 'annos' not in self.custom_infos[0].keys(): return 'No ground-truth boxes for evaluation', {} def kitti_eval(eval_det_annos, eval_gt_annos, map_name_to_kitti): from ..kitti.kitti_object_eval_python import eval as kitti_eval from ..kitti import kitti_utils kitti_utils.transform_annotations_to_kitti_format(eval_det_annos, map_name_to_kitti=map_name_to_kitti) kitti_utils.transform_annotations_to_kitti_format( eval_gt_annos, map_name_to_kitti=map_name_to_kitti, info_with_fakelidar=self.dataset_cfg.get('INFO_WITH_FAKELIDAR', False) ) kitti_class_names = [map_name_to_kitti[x] for x in class_names] ap_result_str, ap_dict = kitti_eval.get_official_eval_result( gt_annos=eval_gt_annos, dt_annos=eval_det_annos, current_classes=kitti_class_names ) return ap_result_str, ap_dict eval_det_annos = copy.deepcopy(det_annos) eval_gt_annos = [copy.deepcopy(info['annos']) for info in self.custom_infos] if kwargs['eval_metric'] == 'kitti': ap_result_str, ap_dict = kitti_eval(eval_det_annos, eval_gt_annos, self.map_class_to_kitti) else: raise NotImplementedError return ap_result_str, ap_dict def get_calib(self, idx): calib_file = self.root_split_path / 'calib' / ('%s.txt' % idx) assert calib_file.exists() return calibration_kitti.Calibration(calib_file) def get_infos(self, num_workers=4, has_label=True, count_inside_pts=True, sample_id_list=None): import concurrent.futures as futures def process_single_scene(sample_idx): # 生成point_cloud字典 print('%s sample_idx: %s' % (self.split, sample_idx)) info = {} pc_info = {'num_features': 4, 'lidar_idx': sample_idx} info['point_cloud'] = pc_info # 生成image字典 image_info = {'image_idx': sample_idx, 'image_shape': self.get_image_shape(sample_idx)} info['image'] = image_info # 生成calib字典 calib = self.get_calib(sample_idx) P2 = np.concatenate([calib.P2, np.array([[0., 0., 0., 1.]])], axis=0) R0_4x4 = np.zeros([4, 4], dtype=calib.R0.dtype) R0_4x4[3, 3] = 1. R0_4x4[:3, :3] = calib.R0 V2C_4x4 = np.concatenate([calib.V2C, np.array([[0., 0., 0., 1.]])], axis=0) calib_info = {'P2': P2, 'R0_rect': R0_4x4, 'Tr_velo_to_cam': V2C_4x4} info['calib'] = calib_info if has_label: # 生成annos字典 obj_list = self.get_label(sample_idx) annotations = {} annotations['name'] = np.array([obj.cls_type for obj in obj_list]) annotations['truncated'] = np.array([obj.truncation for obj in obj_list]) annotations['occluded'] = np.array([obj.occlusion for obj in obj_list]) annotations['alpha'] = np.array([obj.alpha for obj in obj_list]) annotations['bbox'] = np.concatenate([obj.box2d.reshape(1, 4) for obj in obj_list], axis=0) annotations['dimensions'] = np.array([[obj.l, obj.h, obj.w] for obj in obj_list]) # lhw(camera) format annotations['location'] = np.concatenate([obj.loc.reshape(1, 3) for obj in obj_list], axis=0) annotations['rotation_y'] = np.array([obj.ry for obj in obj_list]) annotations['score'] = np.array([obj.score for obj in obj_list]) annotations['difficulty'] = np.array([obj.level for obj in obj_list], np.int32) num_objects = len([obj.cls_type for obj in obj_list if obj.cls_type != 'DontCare']) num_gt = len(annotations['name']) index = list(range(num_objects)) + [-1] * (num_gt - num_objects) annotations['index'] = np.array(index, dtype=np.int32) loc = annotations['location'][:num_objects] dims = annotations['dimensions'][:num_objects] rots = annotations['rotation_y'][:num_objects] loc_lidar = calib.rect_to_lidar(loc) l, h, w = dims[:, 0:1], dims[:, 1:2], dims[:, 2:3] loc_lidar[:, 2] += h[:, 0] / 2 gt_boxes_lidar = np.concatenate([loc_lidar, l, w, h, -(np.pi / 2 + rots[..., np.newaxis])], axis=1) annotations['gt_boxes_lidar'] = gt_boxes_lidar info['annos'] = annotations if count_inside_pts: points = self.get_lidar(sample_idx, False) calib = self.get_calib(sample_idx) pts_rect = calib.lidar_to_rect(points[:, 0:3]) fov_flag = self.get_fov_flag(pts_rect, info['image']['image_shape'], calib) pts_fov = points[fov_flag] corners_lidar = box_utils.boxes_to_corners_3d(gt_boxes_lidar) num_points_in_gt = -np.ones(num_gt, dtype=np.int32) for k in range(num_objects): flag = box_utils.in_hull(pts_fov[:, 0:3], corners_lidar[k]) num_points_in_gt[k] = flag.sum() annotations['num_points_in_gt'] = num_points_in_gt return info sample_id_list = sample_id_list if sample_id_list is not None else self.sample_id_list with futures.ThreadPoolExecutor(num_workers) as executor: infos = executor.map(process_single_scene, sample_id_list) return list(infos) def create_groundtruth_database(self, info_path=None, used_classes=None, split='train'): import torch database_save_path = Path(self.root_path) / ('gt_database' if split == 'train' else ('gt_database_%s' % split)) db_info_save_path = Path(self.root_path) / ('custom_dbinfos_%s.pkl' % split) database_save_path.mkdir(parents=True, exist_ok=True) all_db_infos = {} with open(info_path, 'rb') as f: infos = pickle.load(f) for k in range(len(infos)): print('gt_database sample: %d/%d' % (k + 1, len(infos))) info = infos[k] sample_idx = info['point_cloud']['lidar_idx'] points = self.get_lidar(sample_idx, False) annos = info['annos'] names = annos['name'] difficulty = annos['difficulty'] bbox = annos['bbox'] gt_boxes = annos['gt_boxes_lidar'] num_obj = gt_boxes.shape[0] point_indices = roiaware_pool3d_utils.points_in_boxes_cpu( torch.from_numpy(points[:, 0:3]), torch.from_numpy(gt_boxes) ).numpy() # (nboxes, npoints) for i in range(num_obj): filename = '%s_%s_%d.bin' % (sample_idx, names[i], i) filepath = database_save_path / filename gt_points = points[point_indices[i] > 0] gt_points[:, :3] -= gt_boxes[i, :3] with open(filepath, 'w') as f: gt_points.tofile(f) if (used_classes is None) or names[i] in used_classes: db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin db_info = {'name': names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i, 'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0], 'difficulty': difficulty[i], 'bbox': bbox[i], 'score': annos['score'][i]} if names[i] in all_db_infos: all_db_infos[names[i]].append(db_info) else: all_db_infos[names[i]] = [db_info] # Output the num of all classes in database for k, v in all_db_infos.items(): print('Database %s: %d' % (k, len(v))) with open(db_info_save_path, 'wb') as f: pickle.dump(all_db_infos, f) @staticmethod def create_label_file_with_name_and_box(class_names, gt_names, gt_boxes, save_label_path): with open(save_label_path, 'w') as f: for idx in range(gt_boxes.shape[0]): boxes = gt_boxes[idx] name = gt_names[idx] if name not in class_names: continue line = "{x} {y} {z} {l} {w} {h} {angle} {name}\n".format( x=boxes[0], y=boxes[1], z=(boxes[2]), l=boxes[3], w=boxes[4], h=boxes[5], angle=boxes[6], name=name ) f.write(line) @staticmethod def generate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None): """ Args: batch_dict: frame_id: pred_dicts: list of pred_dicts pred_boxes: (N, 7), Tensor pred_scores: (N), Tensor pred_labels: (N), Tensor class_names: output_path: Returns: """ def get_template_prediction(num_samples): ret_dict = { 'name': np.zeros(num_samples), 'truncated': np.zeros(num_samples), 'occluded': np.zeros(num_samples), 'alpha': np.zeros(num_samples), 'bbox': np.zeros([num_samples, 4]), 'dimensions': np.zeros([num_samples, 3]), 'location': np.zeros([num_samples, 3]), 'rotation_y': np.zeros(num_samples), 'score': np.zeros(num_samples), 'boxes_lidar': np.zeros([num_samples, 7]) } return ret_dict def generate_single_sample_dict(batch_index, box_dict): pred_scores = box_dict['pred_scores'].cpu().numpy() pred_boxes = box_dict['pred_boxes'].cpu().numpy() pred_labels = box_dict['pred_labels'].cpu().numpy() pred_dict = get_template_prediction(pred_scores.shape[0]) if pred_scores.shape[0] == 0: return pred_dict calib = batch_dict['calib'][batch_index] image_shape = batch_dict['image_shape'][batch_index].cpu().numpy() pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(pred_boxes, calib) pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes( pred_boxes_camera, calib, image_shape=image_shape ) pred_dict['name'] = np.array(class_names)[pred_labels - 1] pred_dict['alpha'] = -np.arctan2(-pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6] pred_dict['bbox'] = pred_boxes_img pred_dict['dimensions'] = pred_boxes_camera[:, 3:6] pred_dict['location'] = pred_boxes_camera[:, 0:3] pred_dict['rotation_y'] = pred_boxes_camera[:, 6] pred_dict['score'] = pred_scores pred_dict['boxes_lidar'] = pred_boxes return pred_dict annos = [] for index, box_dict in enumerate(pred_dicts): frame_id = batch_dict['frame_id'][index] single_pred_dict = generate_single_sample_dict(index, box_dict) single_pred_dict['frame_id'] = frame_id annos.append(single_pred_dict) if output_path is not None: cur_det_file = output_path / ('%s.txt' % frame_id) with open(cur_det_file, 'w') as f: bbox = single_pred_dict['bbox'] loc = single_pred_dict['location'] dims = single_pred_dict['dimensions'] # lhw -> hwl for idx in range(len(bbox)): print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f' % (single_pred_dict['name'][idx], single_pred_dict['alpha'][idx], bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3], dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0], loc[idx][1], loc[idx][2], single_pred_dict['rotation_y'][idx], single_pred_dict['score'][idx]), file=f) return annos def create_custom_infos(dataset_cfg, class_names, data_path, save_path, workers=4): dataset = CustomDataset( dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path, training=False, logger=common_utils.create_logger() ) train_split, val_split = 'train', 'val' num_features = len(dataset_cfg.POINT_FEATURE_ENCODING.src_feature_list) train_filename = save_path / ('custom_infos_%s.pkl' % train_split) val_filename = save_path / ('custom_infos_%s.pkl' % val_split) print('------------------------Start to generate data infos------------------------') dataset.set_split(train_split) custom_infos_train = dataset.get_infos( num_workers=workers, has_label=True, count_inside_pts=True ) with open(train_filename, 'wb') as f: pickle.dump(custom_infos_train, f) print('Custom info train file is saved to %s' % train_filename) dataset.set_split(val_split) custom_infos_val = dataset.get_infos( num_workers=workers, has_label=True, count_inside_pts=True ) with open(val_filename, 'wb') as f: pickle.dump(custom_infos_val, f) print('Custom info train file is saved to %s' % val_filename) print('------------------------Start create groundtruth database for data augmentation------------------------') dataset.set_split(train_split) dataset.create_groundtruth_database(train_filename, split=train_split) print('------------------------Data preparation done------------------------') if __name__ == '__main__': import sys if sys.argv.__len__() > 1 and sys.argv[1] == 'create_custom_infos': import yaml from pathlib import Path from easydict import EasyDict dataset_cfg = EasyDict(yaml.safe_load(open(sys.argv[2]))) ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve() create_custom_infos( dataset_cfg=dataset_cfg, class_names=['Car', 'Pedestrian', 'Van'], data_path=ROOT_DIR / 'data' / 'custom', save_path=ROOT_DIR / 'data' / 'custom', )
2. tools/cfgs/custom_models/pointpillar.yaml
这个函数主要是网络模型参数的配置
我主要修改了以下几个点:
1) CLASS_NAMES(替换成你自己的类别信息)
2) _BASE_CONFIFG(custom_dataset.yaml的路径,建议用详细的绝对路径)
3) POINT_CLOUD_RANGE和VOXEL_SIZE
这两者很重要,直接影响后面模型的传播,如果设置不对很容易报错
官方建议 Voxel设置:X,Y方向个数是16的倍数。Z方向为40。
之前尝试设置了一些还是不行,这个我也没太明白到底怎么回事,索性我就不修改
4) ANCHOR_generator_CONFIG
我修改了自己的类别属性以及feature_map_stride,去除了gt_sampling
完整的代码如下:
CLASS_NAMES: ['Car', 'Pedestrian', 'Van'] DATA_CONFIG: _BASE_CONFIG_: /home/gmm/下载/OpenPCDet/tools/cfgs/dataset_configs/custom_dataset.yaml POINT_CLOUD_RANGE: [0, -39.68, -3, 69.12, 39.68, 1] DATA_PROCESSOR: - NAME: mask_points_and_boxes_outside_range REMOVE_OUTSIDE_BOXES: True - NAME: shuffle_points SHUFFLE_ENABLED: { 'train': True, 'test': False } - NAME: transform_points_to_voxels VOXEL_SIZE: [0.16, 0.16, 4] MAX_POINTS_PER_VOXEL: 32 MAX_NUMBER_OF_VOXELS: { 'train': 16000, 'test': 40000 } DATA_AUGMENTOR: DISABLE_AUG_LIST: ['placeholder'] AUG_CONFIG_LIST: # - NAME: gt_sampling # USE_ROAD_PLANE: True # DB_INFO_PATH: # - custom_dbinfos_train.pkl # PREPARE: { # filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Van:5'] # } # # SAMPLE_GROUPS: ['Car:15', 'Pedestrian:15', 'Van:15'] # NUM_POINT_FEATURES: 4 # DATABASE_WITH_FAKELIDAR: False # REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0] # LIMIT_WHOLE_SCENE: False - NAME: random_world_flip ALONG_AXIS_LIST: ['x'] - NAME: random_world_rotation WORLD_ROT_ANGLE: [-0.78539816, 0.78539816] - NAME: random_world_scaling WORLD_SCALE_RANGE: [0.95, 1.05] MODEL: NAME: PointPillar VFE: NAME: PillarVFE WITH_DISTANCE: False USE_ABSLOTE_XYZ: True USE_NORM: True NUM_FILTERS: [64] MAP_TO_BEV: NAME: PointPillarScatter NUM_BEV_FEATURES: 64 BACKBONE_2D: NAME: BaseBEVBackbone LAYER_NUMS: [3, 5, 5] LAYER_STRIDES: [2, 2, 2] NUM_FILTERS: [64, 128, 256] UPSAMPLE_STRIDES: [1, 2, 4] NUM_UPSAMPLE_FILTERS: [128, 128, 128] DENSE_HEAD: NAME: AnchorHeadSingle CLASS_AGNOSTIC: False USE_DIRECTION_CLASSIFIER: True DIR_OFFSET: 0.78539 DIR_LIMIT_OFFSET: 0.0 NUM_DIR_BINS: 2 ANCHOR_GENERATOR_CONFIG: [ { 'class_name': 'Car', 'anchor_sizes': [[1.8, 4.7, 1.8]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [0], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.55, 'unmatched_threshold': 0.45 }, { 'class_name': 'Pedestrian', 'anchor_sizes': [[0.77, 0.92, 1.83]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [0], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.45 }, { 'class_name': 'Van', 'anchor_sizes': [[2.5, 5.7, 1.9]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [0], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.45 }, ] TARGET_ASSIGNER_CONFIG: NAME: AxisAlignedTargetAssigner POS_FRACTION: -1.0 SAMPLE_SIZE: 512 NORM_BY_NUM_EXAMPLES: False MATCH_HEIGHT: False BOX_CODER: ResidualCoder LOSS_CONFIG: LOSS_WEIGHTS: { 'cls_weight': 1.0, 'loc_weight': 2.0, 'dir_weight': 0.2, 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] } POST_PROCESSING: RECALL_THRESH_LIST: [0.3, 0.5, 0.7] SCORE_THRESH: 0.1 OUTPUT_RAW_SCORE: False EVAL_METRIC: kitti NMS_CONFIG: MULTI_CLASSES_NMS: False NMS_TYPE: nms_gpu NMS_THRESH: 0.01 NMS_PRE_MAXSIZE: 4096 NMS_POST_MAXSIZE: 500 OPTIMIZATION: BATCH_SIZE_PER_GPU: 4 NUM_EPOCHS: 80 OPTIMIZER: adam_onecycle LR: 0.003 WEIGHT_DECAY: 0.01 MOMENTUM: 0.9 MOMS: [0.95, 0.85] PCT_START: 0.4 DIV_FACTOR: 10 DECAY_STEP_LIST: [35, 45] LR_DECAY: 0.1 LR_CLIP: 0.0000001 LR_WARMUP: False WARMUP_EPOCH: 1 GRAD_NORM_CLIP: 10
3. tools/cfgs/dataset_configs/custom_dataset.yaml
修改了DATA_PATH, POINT_CLOUD_RANGE和MAP_CLASS_TO_KITTI还有其他的一些类别属性。
修改后的代码如下:
DATASET: 'CustomDataset' DATA_PATH: '/home/gmm/下载/OpenPCDet/data/custom' POINT_CLOUD_RANGE: [0, -40, -3, 70.4, 40, 1] DATA_SPLIT: { 'train': train, 'test': val } INFO_PATH: { 'train': [custom_infos_train.pkl], 'test': [custom_infos_val.pkl], } GET_ITEM_LIST: ["points"] FOV_POINTS_ONLY: True MAP_CLASS_TO_KITTI: { 'Car': 'Car', 'Pedestrian': 'Pedestrian', 'Van': 'Cyclist', } DATA_AUGMENTOR: DISABLE_AUG_LIST: ['placeholder'] AUG_CONFIG_LIST: - NAME: gt_sampling USE_ROAD_PLANE: False DB_INFO_PATH: - custom_dbinfos_train.pkl PREPARE: { filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Van:5'], } SAMPLE_GROUPS: ['Car:20', 'Pedestrian:15', 'Van:20'] NUM_POINT_FEATURES: 4 DATABASE_WITH_FAKELIDAR: False REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0] LIMIT_WHOLE_SCENE: True - NAME: random_world_flip ALONG_AXIS_LIST: ['x'] - NAME: random_world_rotation WORLD_ROT_ANGLE: [-0.78539816, 0.78539816] - NAME: random_world_scaling WORLD_SCALE_RANGE: [0.95, 1.05] POINT_FEATURE_ENCODING: { encoding_type: absolute_coordinates_encoding, used_feature_list: ['x', 'y', 'z', 'intensity'], src_feature_list: ['x', 'y', 'z', 'intensity'], } DATA_PROCESSOR: - NAME: mask_points_and_boxes_outside_range REMOVE_OUTSIDE_BOXES: True - NAME: shuffle_points SHUFFLE_ENABLED: { 'train': True, 'test': False } - NAME: transform_points_to_voxels VOXEL_SIZE: [0.05, 0.05, 0.1] MAX_POINTS_PER_VOXEL: 5 MAX_NUMBER_OF_VOXELS: { 'train': 16000, 'test': 40000 }
4. demo.py
之前训练之后检测框并没有出来,后来我才发现可能是自己的数据集太少,出来的检测框精度太低,于是我在V.draw_scenes部分作了一点修改,并在之前加入一个mask限制条件,结果果然出来检测框了。
demo.py修改部分的代码:
with torch.no_grad(): for idx, data_dict in enumerate(demo_dataset): logger.info(f'Visualized sample index: \t{idx + 1}') data_dict = demo_dataset.collate_batch([data_dict]) load_data_to_gpu(data_dict) pred_dicts, _ = model.forward(data_dict) scores = pred_dicts[0]['pred_scores'].detach().cpu().numpy() mask = scores > 0.3 V.draw_scenes( points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'][mask], ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels'], ) if not OPEN3D_FLAG: mlab.show(stop=True)
三. 运行过程
1. 生成数据字典
python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml
2. 训练
这里我偷懒只训练10轮,自己可以自定义
python tools/train.py --cfg_file tools/cfgs/custom_models/pointpillar.yaml --batch_size=1 --epochs=10
这里有个警告不知道怎么回事,暂时忽略[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)
3. 评估
由于数据集样本设置比较少,而且训练次数比较少,可以看出评估结果较差
4. 结果
还好能有显示,如果没有出现检测框可以把demo.py的score调低