论文地址:《A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals》—张伟
我们要复现的论文是轴承故障诊断里比较经典的一个模型WDCNN,最近在看的很多论文都把WDCNN作为比较模型,但是只找到过tensorflow版本的源码且只有原始的WDCNN没有改进的WDCNN-AdaBN版本,而我自己又是用的pytorch,因此就打算自己复现一下。话不多说直接上代码。
WDCNN:
#!/usr/bin/Python # -*- coding:utf-8 -*- import torch from torch import nn import warnings # ----------------------------inputsize >=28------------------------------------------------------------------------- class WDCNN(nn.Module): def __init__(self, in_channel=1, out_channel=10): super(WDCNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(in_channel, 16, kernel_size=64,stride=16,padding=24), nn.BatchNorm1d(16), nn.ReLU(inplace=True), nn.MaxPool1d(kernel_size=2,stride=2) ) self.layer2 = nn.Sequential( nn.Conv1d(16, 32, kernel_size=3,padding=1), nn.BatchNorm1d(32), nn.ReLU(inplace=True), nn.MaxPool1d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv1d(32, 64, kernel_size=3,padding=1), nn.BatchNorm1d(64), nn.ReLU(inplace=True), nn.MaxPool1d(kernel_size=2, stride=2) ) # 32, 12,12 (24-2) /2 +1 self.layer4 = nn.Sequential( nn.Conv1d(64, 64, kernel_size=3,padding=1), nn.BatchNorm1d(64), nn.ReLU(inplace=True), nn.MaxPool1d(kernel_size=2, stride=2) ) # 32, 12,12 (24-2) /2 +1 self.layer5 = nn.Sequential( nn.Conv1d(64, 64, kernel_size=3), nn.BatchNorm1d(64), nn.ReLU(inplace=True), nn.MaxPool1d(kernel_size=2, stride=2) # nn.AdaptiveMaxPool1d(4) ) # 32, 12,12 (24-2) /2 +1 self.fc=nn.Sequential( nn.Linear(192, 100), nn.ReLU(inplace=True), nn.Linear(100, out_channel) ) def forward(self, x): # print(x.shape) x = self.layer1(x) #[16 64] # print(x.shape) x = self.layer2(x) #[32 124] # print(x.shape) x = self.layer3(x)#[64 61] # print(x.shape) x = self.layer4(x)#[64 29] # print(x.shape) x = self.layer5(x)#[64 13] # print(x.shape) x = x.view(x.size(0), -1) x = self.fc(x) return x