打架识别(AI+Python+PyQt5)(一)

慈云数据 2024-03-13 技术支持 65 0

        最近做了一个打架识别的项目,有感于当时开发资料的匮乏,特做一个小结,供大家参考。闲话少叙,看看效果先。                     


1. 研究现状

        目前打架检测,主要有3种主流的方法,分别是:

(1)基于Detection的打架检测。其主要思想是: 将打架作为一种类别,通过分类的方式,将打架行为检测出来。目前这方面的研究较少,且没有公开可用的数据集,想要沿着这条路走,需自备数据集,自行探索。

(2)基于骨骼点的打架检测。其主要思想是:通过OpenPose等框架,将人体的骨骼点回归出来,然后基于骨骼点写逻辑,进行判断。目前有一部分人是基于这个做的打架检测。但是打架过程中如果人员纠缠在一起的话,利用骨骼点准确判断就比较困难。

(3)基于视频理解的打架检测。其主要思想是: 基于时序进行判断。打架对时序有着较强的依赖,利用目标检测技术去识别打架容易出现误检测或者漏检情况。另外如果人员重叠遮挡严重的话,基于骨骼点的行为识别,就有很大的局限性。而基于视频理解的打架检测,则较好的解决了这些问题。但是这种实现起来难度也较大。


2.选取的方案

        我这里选择方案1,即基于目标检测做打架识别。前文也提到了,目前数据集十分匮乏。笔者也是反复查找,终于拿到了国外的一份很好的数据集。考虑到不同于一般的目标检测任务,所以数据集也是笔者亲自标注的,没有让第三方人员介入,目的就是保证标注的合理与精准。

基本流程是:

Labelme标注 -> 标注数据整理与格式转换 -> 模型训练 -> 部署


2.1 标注

        目前开发工作都是在win11上,采用的是开源的labelme工具。笔者也是头一次使用该工具。使用之后才发现其实还是不错的,功能十分齐全。另外我拿到的国外数据集,是视频的形式,因此需要先将视频转换成图片,然后再进行标注。具体可以参考这篇文章,写的不错。

Labelme标注视频https://www.pudn.com/news/623b0a3f49c1dc3c8980863b.html

Fig.1 利用Labelme进行数据标注

         利用几天空闲时间,笔者标注了上千张图片,然后剔除了一些无效图像,最终标注的数据集的信息如下:

打架数据集信息
标注工具Labelme
数据集名称打架数据集
图片数量/格式800张左右/jpg
图像分辨率1920*1080
标注文件格式json
是否涉密

2.2 标注数据整理与格式转换

        Labelme标注的数据,无法直接用在训练中,需要自己再转换下。因为准备采用Yolo算法,所以这里我们要将Labelme格式转换成Yolo格式。以下是转换脚本:

"""
2023.1.1
该代码实现了labelme导出的json文件,批量转换成yolo需要的txt文件,且包含了坐标归一化
原来labelme标注之后的是:1.jpg  1.json
经过该脚本处理后,得到的是1.jpg 1.json 1.txt
"""
import os
import numpy as np
import json
from glob import glob
import cv2
from sklearn.model_selection import train_test_split
from os import getcwd
classes = ["NOFight", "Fight", "Person"]
# 1.标签路径
labelme_path = "Data20200108/"
isUseTest = False  # 是否创建test集
# 3.获取待处理文件
files = glob(labelme_path + "*.json")
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
print(files)
if isUseTest:
    trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
else:
    trainval_files = files
# split
train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
wd = getcwd()
print(wd)
def ChangeToYolo5(files, txt_Name):
    if not os.path.exists('tmp/'):
        os.makedirs('tmp/')
    list_file = open('tmp/%s.txt' % (txt_Name), 'w')
    for json_file_ in files:
        json_filename = labelme_path + json_file_ + ".json"
        imagePath = labelme_path + json_file_ + ".jpg"
        list_file.write('%s/%s\n' % (wd, imagePath))
        out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')
        json_file = json.load(open(json_filename, "r", encoding="utf-8"))
        height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape
        for multi in json_file["shapes"]:
            points = np.array(multi["points"])
            xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
            xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
            ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
            ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
            label = multi["label"]
            if xmax 
微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon