关于Spark中OptimizeShuffleWithLocalRead 中自己的一些理解

慈云数据 2024-03-13 技术支持 84 0

背景

本文基于 Spark 3.5

关于ShuffleLocalRead的作用简单的来说,就是会按照一定的规则,从一个 map Task 中连续读取多个 reduce数据 的任务,(正常的情况下是读取所有map Task中特定的一个reduce数据任务),具体可以参考Spark AQE中的CoalesceShufflePartitions和OptimizeLocalShuffleReader

分析

直接上OptimizeShuffleWithLocalRead代码:

  override def apply(plan: SparkPlan): SparkPlan = {
    if (!conf.getConf(SQLConf.LOCAL_SHUFFLE_READER_ENABLED)) {
      return plan
    }
    plan match {
      case s: SparkPlan if canUseLocalShuffleRead(s) =>
        createLocalRead(s)
      case s: SparkPlan =>
        createProbeSideLocalRead(s)
    }
  }
 ...
 def canUseLocalShuffleRead(plan: SparkPlan): Boolean = plan match {
  case s: ShuffleQueryStageExec =>
    s.mapStats.isDefined && isSupported(s.shuffle)
  case AQEShuffleReadExec(s: ShuffleQueryStageExec, _) =>
    s.mapStats.isDefined && isSupported(s.shuffle) &&
      s.shuffle.shuffleOrigin == ENSURE_REQUIREMENTS
  case _ => false
 }
 ...
 private def createLocalRead(plan: SparkPlan): AQEShuffleReadExec = {
  plan match {
    case c @ AQEShuffleReadExec(s: ShuffleQueryStageExec, _) =>
      AQEShuffleReadExec(s, getPartitionSpecs(s, Some(c.partitionSpecs.length)))
    case s: ShuffleQueryStageExec =>
      AQEShuffleReadExec(s, getPartitionSpecs(s, None))
  }
}

这里有两种情况会引入LocalshuffleRead:

第一种是引入了REBALANCE hint的场景。这种情况下,在Spark的内部表示 ShuffleOrigin 为 REBALANCE_PARTITIONS_BY_NONE,这种情况下 是hint为REBALANCE而不是REBALANCE(c)或者REBALANCE(num)的情况;

第二种是SMJ 转变为 BHJ的场景。

至于为啥会存在AQEShuffleReadExec(s: ShuffleQueryStageExec, _)这种情况是因为CoalesceShufflePartitions 这个规则会进行分区的合并等

所以在代码中会有两个case:

  • SparkPlan if canUseLocalShuffleRead(s)

    如果满足是REBALANCE hint的情况或者是Spark内部加的(为了满足Shuffle上下算子的数据分布要求)就强加上AQEShuffleReadExec

  • createProbeSideLocalRead

    这里是进行SMJ 转 BHJ的BuildBroadcast的另一边进行ShuffleLocalRead的情况,这种情况下,因为已经进行broadcast了,所以参与BuildBroadcast的另一边也可以进行shufflelocalRead的

    针对于第一种情况 强制加上 AQEShuffleReadExec , 这种情况下在ensureRequirements规则下,有可能会增加额外的Shuffle操作,这种情况就是负优化了,所以在进行了reOptimize操作后,会进行一个判断是否有增益:

            val afterReOptimize = reOptimize(logicalPlan)
            if (afterReOptimize.isDefined) {
              val (newPhysicalPlan, newLogicalPlan) = afterReOptimize.get
              val origCost = costEvaluator.evaluateCost(currentPhysicalPlan)
              val newCost = costEvaluator.evaluateCost(newPhysicalPlan)
              if (newCost  
    

    这里的条件默认是根据shuffle的个数来计算的,如果优化后的shuffle数有增加,则会回退到之前的物理计划中去,当然用户也可以配置spark.sql.adaptive.customCostEvaluatorClass来实现自己的是否有增益的逻辑。

    针对第二种情况,这种情况一般来说都是有正向的提升效果的,但是也会经过第一种情况的逻辑判断。

    额外话题

    我们这边只说到了对于Shuffle或者Broadcast中Build另一侧的处理,那对于Broadcast中Build一侧的的处理是在哪里呢?

    我们知道 Spark中有对SMJ 转 BHJ 有两个地方,一个是正常的流程下经过物理规则的转换(JoinSelection),另一个是在AQE期间,根据指标再次进行转换,

    具体的可以参考:Spark在生产中是否要禁止掉BHJ(BroadcastHashJoin)

    ,

    • 对于第一种情况来说,经过EnsureRequirements规则的时候,是不会在Broadcast子节点中增加Shuffle操作的,所以这里就增加不了AQEShuffleReadExec

      在这里插入图片描述

    • 对于第二种情况来说, 因为在正常流程下,还是SMJ操作,所以会在SMJ字节点中有Shuffle,操作,所以在AQE阶段,可以适用OptimizeShuffleWithLocalRead规则,所以可以看到在这种情况下,Broadcast会有AQEShuffleReadExec 子节点。

      在这里插入图片描述

微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon