【人工智能概论】 K折交叉验证

慈云数据 8个月前 (03-13) 技术支持 99 0

人工智能概论】 K折交叉验证

文章目录

  • 人工智能概论】 K折交叉验证
  • 一. 简单验证及其缺点
    • 1.1 简单验证简介
    • 1.2 简单验证的缺点
    • 二. K折交叉验证
      • 2.1 K折交叉验证的思路
      • 2.2 小细节
      • 2.3 K折交叉验证的缺点
      • 2.4 K折交叉验证的代码

        一. 简单验证及其缺点

        1.1 简单验证简介

        • 简单验证: 将原始数据集随机划分成训练集和验证集两部分,例,将数据按照7:3的比例分成两部分,70%的样本用于训练模型;30%的样本用于模型验证,如下图。

          1.2 简单验证的缺点

          • 数据都只被用了一次;
          • 验证集上计算出来的评估指标与原始分组有很大关系;
          • 对于时序序列,要保存时序信息,往往不能打乱数据的顺序对数据进行随机截取,这就带来了问题,比如总用春、夏、秋的数据做训练,用冬的数据做测试,这显然是有问题的,是不能容忍的。

            二. K折交叉验证

            • 为了解决简单交叉验证的不足,引出K折交叉验证,其既可以解决数据集的数据量不够大的问题,也可以解决参数调优的问题。。

              2.1 K折交叉验证的思路

              1. 首先,将全部样本划分成k个大小相等的样本子集;
              2. 依次遍历这k个子集,每次把当前子集作为验证集,其余所有样本作为训练集,进行模型的训练和评估;
              3. 最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k通常取10,如下图。

              在这里插入图片描述

              2.2 小细节

              • K折交叉验证中有这样一个细节,下一折的训练不是在上一折的基础上进行的,即每训练新的一折都要重新初始化模型参数。
              • K折交叉验证只能做验证使用,因此不能根据它的结果做为模型参数的保存判断依据,但可以基于它做超参组合的确定与模型结构的调整,然后再重新初始化模型,进行训练得到较好的模型参数。
              • 对于有时序信息的数据,要看看不同折之间性能表现会不会有明显差距。

                2.3 K折交叉验证的缺点

                • 因为K折交叉验证执行一次训练的总轮数是每一折的训练轮数(epochs)与总折数(K)的乘积,因此训练的成本会翻倍。

                  2.4 K折交叉验证的代码

                  import torch
                  import random
                  from torch.utils.data import DataLoader, TensorDataset
                  from Model.ReconsModel.Recoder import ReconsModel, Loss_function
                  from Model.ModelConfig import ModelConfig
                  # 返回第 i+1 折(i取 0 ~ k-1)的训练集(train)与验证集(valid)
                  def get_Kfold_data(k, i, x):  # k是折数,取第i+1折,x是特征数据
                      fold_size = x.size(0) // k  # 计算每一折中的数据数量
                      val_start = i * fold_size  # 第 i+1折 数据的测试集初始数据编号
                      if i != k - 1:  # 不是最后一折的话,数据的分配策略
                          val_end = (i + 1) * fold_size  # 验证集的结束
                          valid_data = x[val_start: val_end]
                          train_data = torch.cat((x[0: val_start], x[val_end:]), dim=0)
                      else:  # 如果是最后一折,数据的分配策略,主要涉及到不能K整除时,多出的数据如何处理
                          valid_data = x[val_start:]  # 实际上,多出来的样本,都放在最后一折里了
                          train_data = x[0: val_start]
                      return train_data, valid_data
                  # k折交叉验证,某一折的训练
                  def train(model, train_data, valid_data, batch_size, lr,epochs):
                      # 数据准备
                      train_loader = DataLoader(TensorDataset(train_data), batch_size, shuffle=True)
                      valid_loader = DataLoader(TensorDataset(valid_data), batch_size, shuffle=True)
                      # 损失函数,优化函数的准备
                      criterion = Loss_function()
                      optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
                      # 记录每一个epoch的平均损失
                      train_loss = []
                      valid_loss = []
                      for epoch in range(epochs):
                          tra_loss = 0
                          val_loss = 0
                          for i , data in enumerate(train_loader):
                              # 假设数据的处理 此时的data是list类型的数据,转化成Tensor,并且把多出来的第0维去掉
                              data = torch.stack(data)
                              data = data.squeeze(0)
                              optimizer.zero_grad()  # 梯度清零
                              recon, mu, log_std = model(data, if_train=True)  # if_train不能少
                              # 计算损失
                              loss = criterion.loss_function(recon, data, mu, log_std)
                              # 反向传播
                              loss.backward()
                              optimizer.step()
                              tra_loss = tra_loss + loss.item()
                          tra_loss = tra_loss / len(train_data)
                          train_loss.append(tra_loss)
                          # 计算测试集损失
                          with torch.no_grad():
                              for i, data in enumerate(valid_loader):
                                  # 假设数据的处理 此时的data是list类型的数据,转化成Tensor,并且把多出来的第0维去掉
                                  data = torch.stack(data)
                                  data = data.squeeze(0)
                                  optimizer.zero_grad()
                                  recon, mu, log_std = model(data, if_train=False)
                                  test_loss = criterion.loss_function(recon, data, mu, log_std).item()
                                  val_loss = val_loss + test_loss
                              val_loss = val_loss / len(valid_data)
                              valid_loss.append(val_loss)
                          print('第 %d 轮, 训练的平均误差为%.3f, 测试的平均误差为%.3f 。'%(epoch+1, tra_loss, val_loss))
                      return train_loss, valid_loss
                  # k折交叉验证
                  def k_test(config, datas): # k是总折数,
                      valid_loss_sum = 0
                      for i in range(config.k):
                          model = ReconsModel(config) # 细节,每一折,并不是在上一折训练好的模型基础上继续训练,而是重新训练
                          print('-'*25,'第',i+1,'折','-'*25)
                          train_data , valid_data = get_Kfold_data(config.k, i, datas) # 获取某一折的训练数据、测试数据
                          train_loss, valid_loss = train(model, train_data, valid_data, config.batch_size, config.lr, config.epochs)
                          # 求某一折的平均损失
                          train_loss_ave = sum(train_loss)/len(train_loss)
                          valid_loss_ave = sum(valid_loss)/len(valid_loss)
                          print('-*-*-*- 第 %d 折, 平均训练损失%.3f,平均检验损失%.3f -*-*-*-'%(i+1, train_loss_ave,valid_loss_ave))
                          valid_loss_sum = valid_loss_sum + valid_loss_ave
                      valid_loss_k_ave = valid_loss_sum / config.k  # 基于K折交叉验证的验证损失
                      print('*' * 60, )
                      print('基于K折交叉验证的验证损失为%.4f'%valid_loss_k_ave)
                  
                  if __name__ == "__main__":
                      # 创建数据集,或者说数据集只要是这样的形式即可
                      X = torch.rand(5000, 16, 38)  # 5000条数据,,每条有16个时间步,每步38个特征,时序数据
                      # 随机打乱
                      index = [i for i in range(len(X))]
                      random.shuffle(index)
                      X = X[index]  # 要是有标签的话,index要对得上
                      config = ModelConfig()
                      config.load('./Model/config.json')
                      k_test(config, X)
                  
微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon