一、标定原理
机器人手眼标定分为eye in hand与eye to hand两种。介绍之前进行变量定义说明:
{b}: base基坐标系
{g}: gripper夹具坐标系
{t}: target标定板坐标系
{c}: camera相机坐标系
1、眼在手上(eye in hand)
眼在手上,相机固定在机器人上。

图1. eye in hand示意图

由以上两公式得:

经变换得:

可得:

求解X即标定 :

2、眼在手外(eye to hand)
眼在在手外,相机固定在机器人外。

图2. eye to hand示意图

由以上两公式可得:

经变换得:

可得:

求解X即标定:

二 、标定步骤
将标定板固定至机械臂末端;
在位置1采集标定板图像,并记录机械臂在位置1下的位置与姿态;
在位置2采集标定板图像,并记录机械臂在位置2下的位置与姿态;
相机标定,获取25-40组Tt_c ;
位姿读取,获取25-40组Tb_g ;
根据5,6调用标定接口,获取Tc_b 。
三、标定代码
import os import cv2 import xlrd2 from math import * import numpy as np class Calibration: def __init__(self): self.K = np.array([[2.54565632e+03, 0.00000000e+00, 9.68119560e+02], [0.00000000e+00, 2.54565632e+03, 5.31897821e+02], [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]], dtype=np.float64) self.distortion = np.array([[-0.2557898, 0.81056366, 0.0, 0.0, -8.39153683]]) self.target_x_number = 12 self.target_y_number = 8 self.target_cell_size = 40 def angle2rotation(self, x, y, z): Rx = np.array([[1, 0, 0], [0, cos(x), -sin(x)], [0, sin(x), cos(x)]]) Ry = np.array([[cos(y), 0, sin(y)], [0, 1, 0], [-sin(y), 0, cos(y)]]) Rz = np.array([[cos(z), -sin(z), 0], [sin(z), cos(z), 0], [0, 0, 1]]) R = Rz @ Ry @ Rx return R def gripper2base(self, x, y, z, tx, ty, tz): thetaX = x / 180 * pi thetaY = y / 180 * pi thetaZ = z / 180 * pi R_gripper2base = self.angle2rotation(thetaX, thetaY, thetaZ) T_gripper2base = np.array([[tx], [ty], [tz]]) Matrix_gripper2base = np.column_stack([R_gripper2base, T_gripper2base]) Matrix_gripper2base = np.row_stack((Matrix_gripper2base, np.array([0, 0, 0, 1]))) R_gripper2base = Matrix_gripper2base[:3, :3] T_gripper2base = Matrix_gripper2base[:3, 3].reshape((3, 1)) return R_gripper2base, T_gripper2base def target2camera(self, img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (self.target_x_number, self.target_y_number), None) corner_points = np.zeros((2, corners.shape[0]), dtype=np.float64) for i in range(corners.shape[0]): corner_points[:, i] = corners[i, 0, :] object_points = np.zeros((3, self.target_x_number * self.target_y_number), dtype=np.float64) count = 0 for i in range(self.target_y_number): for j in range(self.target_x_number): object_points[:2, count] = np.array( [(self.target_x_number - j - 1) * self.target_cell_size, (self.target_y_number - i - 1) * self.target_cell_size]) count += 1 retval, rvec, tvec = cv2.solvePnP(object_points.T, corner_points.T, self.K, distCoeffs=distortion) Matrix_target2camera = np.column_stack(((cv2.Rodrigues(rvec))[0], tvec)) Matrix_target2camera = np.row_stack((Matrix_target2camera, np.array([0, 0, 0, 1]))) R_target2camera = Matrix_target2camera[:3, :3] T_target2camera = Matrix_target2camera[:3, 3].reshape((3, 1)) return R_target2camera, T_target2camera def process(self, img_path, pose_path): image_list = [] for root, dirs, files in os.walk(img_path): if files: for file in files: image_name = os.path.join(root, file) image_list.append(image_name) R_target2camera_list = [] T_target2camera_list = [] for img_path in image_list: img = cv2.imread(img_path) R_target2camera, T_target2camera = self.target2camera(img) R_target2camera_list.append(R_target2camera) T_target2camera_list.append(T_target2camera) R_gripper2base_list = [] T_gripper2base_list = [] data = xlrd2.open_workbook(pose_path) table = data.sheets()[0] for row in range(table.nrows): x = table.cell_value(row, 0) y = table.cell_value(row, 1) z = table.cell_value(row, 2) tx = table.cell_value(row, 3) ty = table.cell_value(row, 4) tz = table.cell_value(row, 5) R_gripper2base, T_gripper2base = self.gripper2base(x, y, z, tx, ty, tz) R_gripper2base_list.append(R_gripper2base) T_gripper2base_list.append(T_gripper2base) R_camera2base, T_camera2base = cv2.calibrateHandEye(R_gripper2base_list, T_gripper2base_list, R_target2camera_list, T_target2camera_list) return R_camera2base, T_camera2base, R_gripper2base_list, T_gripper2base_list, R_target2camera_list, T_target2camera_list def check_result(self, R_cb, T_cb, R_gb, T_gb, R_tc, T_tc): for i in range(len(R_gb)): RT_gripper2base = np.column_stack((R_gb[i], T_gb[i])) RT_gripper2base = np.row_stack((RT_gripper2base, np.array([0, 0, 0, 1]))) RT_base2gripper = np.linalg.inv(RT_gripper2base) print(RT_base2gripper) RT_camera_to_base = np.column_stack((R_cb, T_cb)) RT_camera_to_base = np.row_stack((RT_camera_to_base, np.array([0, 0, 0, 1]))) print(RT_camera_to_base) RT_target_to_camera = np.column_stack((R_tc[i], T_tc[i])) RT_target_to_camera = np.row_stack((RT_target_to_camera, np.array([0, 0, 0, 1]))) RT_camera2target = np.linalg.inv(RT_target_to_camera) print(RT_camera2target) RT_target_to_gripper = RT_base2gripper @ RT_camera_to_base @ RT_camera2target print("第{}次验证结果为:".format(i)) print(RT_target_to_gripper) print('') if __name__ == "__main__": image_path = r"D\code\img" pose_path = r"D\code\pose.xlsx" calibrator = Calibration() R_cb, T_cb, R_gb, T_gb, R_tc, T_tc = calibrator.process(image_path, pose_path) calibrator.check_result(R_cb, T_cb, R_gb, T_gb, R_tc, T_tc)