【海贼王的数据航海:利用数据结构成为数据海洋的霸主】时间复杂度 | 空间复杂度

慈云数据 2024-03-12 技术支持 112 0

目录

1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

2.2 -> 大O的渐进表示法

2.3 -> 常见时间复杂度计算

3 -> 空间复杂度

4 -> 常见复杂度对比


1 -> 算法效率

1.1 -> 如何衡量一个算法的好坏?

对于以下斐波那契数列:

#define _CRT_SECURE_NO_WARNINGS
#include 
using namespace std;
long long fib(int N)
{
	if (N  

用递归实现斐波那契数列,看上去代码十分简洁,但简洁一定就是好算法吗?如何衡量一个算法的好坏?

1.2 -> 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机存储容量很小。所以对于空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要特别关注一个算法的空间复杂度。

2 -> 时间复杂度

2.1 -> 时间复杂度的概念

定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上来讲,是不能算出来的,只有把程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?固然可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方法。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

#define _CRT_SECURE_NO_WARNINGS
#include 
using namespace std;
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i   
  N = 1000 F(N) = 1002010  
  
 

实际我们在计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,所以我们使用大O的渐进表示法。

2.2 -> 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

  1. 在常数1取代运行时间中的所有加法常数;
  2. 在修改后的运行次数函数中,只保留最高阶项;
  3. 如果最高阶项存在且不为1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法后,Func1的时间复杂度为:

O(N^{2})

-> N = 10 F(N) = 100

-> N = 100 F(N) = 10000 -> N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最好情况:任意输入规模的最小运行次数(下界)
  • 平均情况:任意输入规模的期望运行次数
  • 最坏情况:任意输入规模的最大运行次数(上界)

    例如:在一个长度为N的数组中搜索一个数据x

    • 最好情况:1次找到
    • 平均情况:N / 2次找到
    • 最坏情况:N次找到

      在实际中一般情况关注的是算法的最坏运行情况,所以数组中的搜索数据时间复杂度为:

      O(N)

      2.3 -> 常见时间复杂度计算

      实例1:

      // 计算Func2的时间复杂度?
      void Func2(int N)
      {
      	int count = 0;
      	for (int k = 0; k  a[i])
      			{
      				Swap(&a[i - 1], &a[i]);
      				Exchange = 1;
      			}
      		}
      		if (exchange == 0)
      			break;
      	}
      }

      实例2:

      // 计算fib的空间复杂度?
      // 返回斐波那契数列的前n项
      long long* fib(size_t n)
      {
      	if (n == 0)
      		return NULL;
      	long long* arr = (long long*)malloc((n + 1) * sizeof(long long));
      	arr[0] = 0;
      	arr[1] = 1;
      	for (int i = 2; i  常见复杂度对比 
      

      一般算法的常见复杂度:

      5201314O(1)常数阶
      3n + 4O(n)线性阶
      3n ^ 2 + 4n + 5O(n ^ 2)平方阶
      3log(2)n + 4O(logn)对数阶
      2n + 3nlog(2)n + 4O(nlogn)nlogn阶
      n ^ 3 + n ^ 2 + 3n + 4O(n ^ 3)立方阶
      2 ^ nO(2 ^ n)指数阶


      感谢大佬们支持!!!

      互三啦!!!

微信扫一扫加客服

微信扫一扫加客服

点击启动AI问答
Draggable Icon